
O-R Mapping

What is it and should we be
using it?

Object-Relational Mapping

• Object-Relational mapping is a mapping of
objects to tables in relational databases.

• In our case, this means mapping Java
objects to Oracle SQL tables.

• Two of the four primary alternatives to Java
and DB development use O-R mapping:

Alternative 1: Non-OO Java!

1. Use Java in a non-object-oriented way, with static
methods. This basically means that classes in our
program merely represent independent program
modules, and not conceptual objects.

This is our current development model –it is similar to
programming in a procedural language like C.

Alternative 2: Manual O-R

2. Use Java in an O-O way, representing concepts
in our applications as objects, for example,
User, Contact, Calendar, Plan, Project,
Group, etc.

Here we manually create code to map from the
database tables to objects and back again.

This is unwieldy and creates too many problems
trying to keep data consistent. We have tried this
and it doesn’t work well.

Alternative 3: Object Databases

3. This is where we use databases that store
objects directly, rather than using a
conventional relational DB model.

Although at first this seems like a good
option, such databases are not currently a
scalable option. They cannot handle large
volumes of data.

Alternative 4: Automated O-R

4. Purchase or create (!) O-R mapping tools which
enable us to program in an object-oriented way.

This provides automatic creation of code to map
between objects and database tables, removing
this concern for the developer.

Illustrating further:

Example of Automated O-R -
Objects

Object Relationships

User
First Name
Surname

User
First Name
Surname

User
First Name
Surname

Group
Group Name

Group Created

• This is a snapshot of
objects in memory as
they might occur in
our system.

Object
data {

Object
data {

Example of Automated O-R -
Database

User ID First Nam e Surnam e
1 Fred Smith
2 George Jones
3 Mary Simpson

Group ID User ID
3 1
3 2
4 3
4 2

Group ID Group Nam e Group Created
3 Group 1 01/01/2000
4 Group 2 01/03/2000

• This is an example of the
type of database schema
we might be using.

Mapping

• With automated tools, one can create a
mapping from the schema to the objects.
These tools then generate the Java code to
map between the objects and the DB
automatically.

Mapping

• Dealing with foreign key constraints is one of the
primary problems with Manual O-R code, and one
of the main advantages of using Automated O-R
tools, because:

• Most mapping tools understand that a foreign key
is equivalent to object aggregation in Java, and can
take this into account, to ensure correctness of the
Java code automatically generated to handle the
database.

Java Blend

• A typical Automated O-R tool is Java
Blend:

Default DB Mapping

Java Blend allows
visual manipulation of
the mapping between
objects and tables
before automatic
creation of the Java
code.

Each table
Each Java Class

Column and field mapping for
each table / class

Recommendation

• My recommendation in the long term is
this fourth approach – using O-R
Automated tools such as Java Blend.

Advantages of Automated O-R

• It reduces the code each developer has to
write. Moreover, this is tedious and
repetitive code.

• Reorganisation of Java code or DB schemas
is made less painful, because large amounts
of code can be re-generated automatically.

Advantages of Automated O-R

• Off-the-shelf tools already exist which have
claimed scalability to enterprise size. I have
not had the resources to test whether this is
the case.

• However, since the tools generate pure Java
JDBC code (certainly Java Blend does),
they have the potential to be as good as
anything we could write.

Places where we could apply O-R

O-R could be useful in two primary locations:

1. ApoApsis Core – although this is currently a small
set of code, I predict it will grow as we ‘discover’
desired features for applications we develop, which
are required again and again.

2. Applications themselves – each application will
obviously require their own ‘concepts’ which will
embodied as classes and tables – the O-R tool will aid
rapid development of these applications (RAD!).

Disadvantages

• However, there are disadvantages of using
O-R mapping tools, and this is why we are
not currently using them:

Disadvantages

• They cost money – e.g. Java Blend, $1000 /
developer seat.

• They tie us into a technology. This means
our entire architecture relies on a certain
tool. We want the architecture to be as
system-independent as possible: hence why
we are currently using Java and JDBC-only
DB access.

Conclusion

• The rollout time for our initial applications
and core would be far greater if we were to
use Automated O-R tools now. But in the
medium to long term, I believe we should
aim to migrate to that model, since it allows
for far easier and more rapid development.

Conclusions

• Full evaluation of all the Automated O-R tools,
and their scalability and practicality would of
course be required.

• Also, we would need to evaluate the implications
of technology tie-in, and investigate how difficult
it would be to migrate away from a tool as well if
required.

