
Subversive Cross-Team
Componentization

Andrew Ferrier
MQ & ESB
May 2004

Abstract
Use of Subversion, an open-source source code library tool designed
to supersede CVS, can provide a stop-gap for when time constraints
don’t allow full componentization. This could be of use to the IBM
development community by maintaining dependencies between
different code bases more easily. Subversion enables code changes
from one code base to be semi-automatically merged into another
code base, whilst the second code base is undergoing change.

Subversion is a stable library system, which also has many other
compelling features. There are few reasons not to use it in preference
to CVS.

Scenario: There are two products, Flangifier and Grommilator,
which want to share a component Wonkify. Wonkify has already
almost been finished by Flangifier’s development team, although they
have some bugs to fix. But there isn’t time to make it more abstract so
it can be directly used by Gromillator before Gromillator needs to be
ready.

Solution: Flangifier’s Wonkify has a variety of files. Gromillator’s
development team check these into their Subversion repository:

Subversion’s Hidden Talent: ‘Vendor’ Merging

2

flangifier/ [1]
`-- wonkify/ [1]

|-- java/ [1]
| `-- wonkify_api.java [1]
|-- make/ [1]
| `-- make.xml [1]
|-- wonkify.cpp [1]
`-- wonkify.h [1]

They then make a copy of it into another
directory within the repository via Subversion:

flangifier/ [1]
`-- wonkify/ [1]

|-- java/ [1]
| `-- wonkify_api.java [1]
|-- make/ [1]
| `-- make.xml [1]
|-- wonkify.cpp [1]
`-- wonkify.h [1]

gromillator/ [2]
`-- wonkify/ [2]

|-- java/ [2]
| `-- wonkify_api.java [2]
|-- make/ [2]
| `-- make.xml [2]
|-- wonkify.cpp [2]
`-- wonkify.h [2]

Gromillator’s team work on the copy,
removing Flangifier-specific features, fixing a
few bugs, and changing the component to
work with Gromillator.

svn copy flangifier/wonkify/ gromillator/wonkify/
The [1] indicates the last revision
during which the file changed.

The files in the flangifier and gromillator directories, once the copy has taken place, are
treated totally separately, although internally Subversion stores them as pointers to the
same data until one is modified – this is usually described as ‘copies are cheap’.

svn add flangifier/wonkify/*

Easy Merging (contd.)

3

But Flangifier’s development team have been working on Wonkify in
the meantime – and not only have they fixed a few bugs, they’ve
added some features also. Files and directories have been deleted,
added, changed – how can Gromillator’s team get up-to-date with
these latest changes easily?

Gromillator’s team check the latest version of the Flangifier code into
the same location as before and then perform a merge:

Based on an original idea from the Subversion book:
http://svnbook.red-bean.com/en/1.1/svn-book.html#svn-ch-7-sect-4

Subversion automatically merges in all the non-conflicting file and
directory changes from Flangifier (with a small amount of help during
the svn_load_dirs stage). The only manual work they need to do is to
identify any files which changed irreconcilably in both Flangifier and
Gromillator (such as make.xml here) and resolve those points using a
standard merge tool

flangifier/ [98]
`-- wonkify/ [98]

|-- make/ [98]
| `-- make.xml [98]
|-- wonkify.cpp [98]
|-- wonkify.h [1]
`-- wonkify_api.java [98]

gromillator/ [2]
`-- wonkify/ [2]

|-- java/ [2]
| `-- wonkify_api.java [2]
|-- make/ [2]
| `-- make.xml [2]
|-- wonkify.cpp [2]
`-- wonkify.h [2]

svn_load_dirs $REPOS flangifier/ /tmp/latest_flangifier

svn merge -r1:98 $REPOS/flangifier $REPOS/gromillator

(note that wonkify_api.java
has moved, and wonkify.h has
not changed)

flangifier/ [98]
`-- wonkify/ [98]

|-- make/ [98]
| `-- make.xml [98]
|-- wonkify.cpp [98]
|-- wonkify.h [1]
`-- wonkify_api.java [98]

gromillator/ [99]
`-- wonkify/ [99]

|-- make/ [99]
| `-- make.xml [99, C]
|-- wonkify.cpp [99]
|-- wonkify.h [2]
`-- wonkify_api.java [99]

Uses and Other Features

4

For more information, visit: http://subversion.tigris.org/

The above process is slightly simplified, but this basic technique, using
Subversion, is being used successfully to keep code bases between two
teams in sync. as part of a forthcoming ESB product. Generalizing the
codebase would not be feasible in the available timeframe. Nevertheless,
this technique does require discipline and is probably be best suited to
small development teams – where a particular component needs special
handling or as a replacement for CVS.

The process is not new, but it is rarely used, yet straightforward to do, and can be a
helpful stop-gap for schedule difficulties. More complex schemes are also possible.

Subversion also has other compelling features as a library system:

• It has a similar interface to CVS – this is familiar to many developers.
CVS does some of the above, but doesn’t (for example) version directories
– vital for a complex code base.
• Compared to CMVC, it is considerably simpler because version
numbers are per-repository, not per-file, so a track / commit / version
number are all the same concept for Subversion. Also, releases /
components / tags / branches are all implemented simply by copying a
directory tree.
• It handles binary files efficiently using a binary differencing algorithm.
• The server runs on Linux, Windows, etc. Several graphical clients are
also available for various platforms in addition to the command line client.

