
Web Server Simulation System — User Guide —

Version 1.0

Andrew Ferrier

June 20, 2002

Contents

1 Licencing 2

2 An Overview of WS3 2

3 System Requirements 2

4 Installing WS3 3
4.1 Installing on Unix/Linux . 4
4.2 Installing on Windows . 4
4.3 Warning About Installation on any Platform 4

5 File Structure Once Installed 4

6 Testing the Install of WS3 (Web Server Simulation System) 5
6.1 Testing on Unix/Linux . 5
6.2 Testing on Windows . 5
6.3 Randomisation Test . 5

7 Rebuilding the Javadoc Documentation 6

8 Creating an Input File 6
8.1 Points to be Noted about Input Files 6
8.2 Input File Elements . 7
8.3 System Objects . 8
8.4 Connections and Routes . 10
8.5 Distribution Types . 11
8.6 Time-to-live Expiry . 14
8.7 Constraint Enforcement . 14

9 Running WS3 14
9.1 Data Dumping . 15
9.2 Tracing . 15

10 Interpreting the Output of WS3 15

11 References 16

1

2 3 SYSTEM REQUIREMENTS

12 Glossary 17

13 List of Acronyms 17

1 Licencing

WS3 is subject to the licence conditions in the file LICENCE, supplied with all
pre-packaged versions of WS3. Apache Xerces, [1], also supplied with all pre-
packaged versions of WS3, is subject to it’s own licence conditions, found in the
file LICENCE.xerces.

This product includes software developed by the
Apache Software Foundation (http://www.apache.org/).

2 An Overview of WS3

WS3 emulates a web serving system. It does this by reading in an XML (eXten-
sible Markup Language) input file that you specify, parsing it, and constructing
a simulation of that system in memory that represents the system you have
specified in the input file. It then executes that simulation system for a period
of time that you have specified, using various parameters that you have speci-
fied. When the simulation is finished, WS3 will output various data on the state
of the simulation. Data can also optionally be output during the execution of
the simulation.

There are three main objects which can exist in a WS3 simulation system
— clients, servers, and network nodes. There must be at least one client and
one server, but network nodes are optional. Objects communicate by sending
messages to each other along connections — these messages are either requests
(sent by clients to servers) or replies (sent back from servers to clients in response
to requests). Network nodes, if used, are used purely as intermediaries. Routes
are used to specify ways of getting from one system object to another if they
are not directly connected with a single connection.

Network nodes and servers have incoming message queues. Incoming mes-
sages are added to the queues and remain there until all the items ahead of
them have been processed. For network nodes, processing merely involves send-
ing on the message via an appropriate route. For servers, processing involves
parsing the message (which should be a request), formulating a reply message
and sending the reply message back via an appropriate route.

Clients do not have incoming message queues. Replies are processed imme-
diately. Reply processing does not involve anything except recording the fact
that the reply has been received.

3 System Requirements

• An operating system which can support the Java 2 Environment, such as
Windows 2000 or Linux. Other operating systems also support the Java
2 Environment and WS3 should operate correctly with those too, but it
has not been tested with them. Installation instructions in this user guide
are only given for Windows and Linux.

Web Server Performance Simulation c© Andrew Ferrier 2002

4 INSTALLING WS3 3

• A Java Run-Time Environment which is compatible with the Java Soft-
ware Development Kit, version 1.3.1, as provided by Sun [2], such as the
Java Run-Time Environment 1.3.1. This environment must be correctly
installed as per the instructions that come with it, such that the PATH
and CLASSPATH environment variables are set correctly.

Note: If you want to build WS3 from source code, you should have the full
Java Development Kit installed rather than just a run-time environment.

• A Java XML Parser with the following features:

– Support for XML 1.0 [3].

– Support for DOM (Document Object Model) Level 2.

– Support for JAXP (Java API for XML Parsing).

An example of a parser with those features is the Xerces Java Parser,
version 1.4.4 [1]. This has been tested with WS3 far more extensively than
any other Parser. Some other parsers may cause problems when used with
WS3. In particular, the Apache Crimson Parser has been briefly tested
and I had some problems with it, as it does not support XML Schema
validation.

The Xerces Java Parser, version 1.4.4 is supplied with all pre-packaged
versions of WS3. It is subject to it’s own licencing conditions, found in
the file LICENCE.xerces. It is recommended that you use this version of
Xerces as it has been tested with WS3.

• If you wish to build WS3 from the source code using the supplied makefile,
you must have GNU (GNU’s Not Unix) make [4] installed, as well as a
standard suite of Unix utilities, especially xargs. On Linux or other Unix
systems, this is often already installed. On Windows the easiest way to
obtain this functionality is to install a Unix emulation layer such as Cygwin
[5].

4 Installing WS3

WS3 will come distributed in one of the three following types of files:

• A .zip file.

• A .tar.bz2 file.

• A .tar.gz file.

A .zip file should be used if you are planning to install on Windows. If you
plan to install on Unix/Linux, use the .tar.bz2 or .tar.gz file. Which you
use will depend on what decompression programs are installed on your system
— gz decompression is more widely available, but the bz2 file will be smaller
to download.

c© Andrew Ferrier 2002 Web Server Performance Simulation

4 5 FILE STRUCTURE ONCE INSTALLED

4.1 Installing on Unix/Linux

Note: The following commands should be entered from a shell prompt.
Uncompress the archive into a temporary directory, then change to that

directory. For these instructions, we are going to assume that the directory is
/ws3. For example, if using the .tar.bz2 file1:

mkdir ~/ws3
tar xvjf ws3.tar.bz2 --directory=~/ws3
cd ~/ws3

Or if using the .tar.gz file:

mkdir ~/ws3
tar xvzf ws3.tar.gz --directory=~/ws3
cd ~/ws3

The archive is distributed with a pre-made binary .jar file that you can use
to run WS3 (after installing it). However, if you want to re-build WS3, execute
the following commands:

make clean
make all

In order to install WS3, use the following command:

make install

4.2 Installing on Windows

Unzip the .zip file (archive) into a directory somewhere on your computer, for
example c:\ws3.

4.3 Warning About Installation on any Platform

Note: It is important to ensure that however you install WS3, the xerces.jar
file is in the same directory as ws3.jar, or that xerces.jar is in your Java
Runtime Environment’s official extension directory. No other location will be
likely to work, even if that location is in your CLASSPATH — this is because WS3

is invoked with the java -jar option, which ignores the CLASSPATH. For more
information, see [6]. The standard Makefile supplied with WS3 will install
both of these files in the same place, so this problem should not occur unless
you try to install manually.

5 File Structure Once Installed

Once WS3 is installed, the following directory and file structure will exist in the
directory you have installed into2:

1The j option is not available on tar on some systems. Type man tar or man bzip2 to find
out how to decompress the file

2Only important files and directories are shown.

Web Server Performance Simulation c© Andrew Ferrier 2002

6 TESTING THE INSTALL OF WS3 5

doc/ - The Java source files and compiled classes
tests/ - The input test files
ws3.jar - The WS3 Jar file which can be used to invoke WS3
xerces.jar - The supplied Apache Xerces Parser
ws3.xsd - The WS3 XML schema
README - Miscellaneous information
LICENCE.* - Licence information
Makefile - The makefile which can be used to rebuild WS3

6 Testing the Install of WS3

6.1 Testing on Unix/Linux

Bring up a shell prompt and change to the directory where you extracted WS3

(e.g. ~/ws3). Execute the following command:

make test

6.2 Testing on Windows

Bring up a command prompt in Windows. From the directory where you ex-
tracted WS3 (which, if you followed the instructions above, will be c:\ws3),
and execute the following command:

make test_noinstall

WS3 will build and install itself if necessary, then run through a variety of
test simulation specifications designed to ensure that it is installed correctly.
These test simulation specifications are the TST and CNC files referred to in
the Testing and Evaluation chapters of the final report of this project [7]. Bear
in mind that some of the tests are designed to fail!

6.3 Randomisation Test

WS3 utilises the random number generator supplied with your Java Runtime
Environment as a source of randomness. You can run a test to ensure that
this random number generator does not ‘repeat’ itself too quickly. From the
directory where you installed WS3, type:

make randomtest

A utility will load and begin generating random numbers. It will take many
years to complete execution, unless your random number generation implemen-
tation is faulty, in which case it may abort fairly quickly with a warning. You
will want to abort it after a while, when you are confident than it has run for
longer than you will ever want to use WS3 for. Press Ctrl-C to do this.

See the final report for this project [7] for more information on these ran-
domness issues.

c© Andrew Ferrier 2002 Web Server Performance Simulation

6 8 CREATING AN INPUT FILE

7 Rebuilding the Javadoc Documentation

The WS3 archive file is supplied with Javadoc documentation pre-built in the
docs/ directory. If you wish to rebuild this documentation, enter the following
command from the directory where you unpacked the archive:

make doc

8 Creating an Input File

An input file for WS3 is an XML file, which conforms to a certain XML Schema.
This schema is supplied with WS3 (the file supplied is called ws3.xsd), and
specifies what elements can occur in the XML file, in what order, with what
content, etc. — in other words, it constrains the content of the XML to a
subset of valid XML. If you are not familiar with XML or XML schemas, it is
recommended you use an XML editor which supports schemas to create any and
all XML files which are input to the program, such as XML Spy [8]. WS3 checks
the XML file is valid for the schema3, but the error messages thus produced
directly reference the content of the schema and thus may be counter-intuitive
to users not familiar with how schemas work. The XML file should conform to
the basic layout shown in figure 1. This will ensure that the program correctly
uses the right schema file, and is well-formed XML.

1 <?xml version="1.0"?>
2

3 <system xmlns="http://www.new-destiny.co.uk/andrew/project/"
4 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
5 dataDumpPeriod="dataDumpPeriodInVirtualSeconds">
6 <name>inputSystemName</name>
7 <runtime>runtimeInVirtualSeconds</runtime>
8

9 <!-- a number of system object elements -->
10

11 </system>

Figure 1: An outline layout for how an input XML file to WS3 should look
.

8.1 Points to be Noted about Input Files

The following points should be noted about input files to WS3:

• Identifiers are used to specify names and refer to system objects in the
input file. Identifiers can contain only the alphanumeric characters (upper
and lower case), and the underscore () and dash (-) characters, and must
be between 1 and 127 characters long. All identifiers are case-sensitive.

3In most cases, assuming one is using a schema-validating XML parser library, such as
Xerces 1.4.4.

Web Server Performance Simulation c© Andrew Ferrier 2002

8 CREATING AN INPUT FILE 7

Being case-sensitive means, for example, that clientA, ClientA, CLIENTA,
and Clienta are all names of different system objects. However, one
should try to avoid using different system objects which are differentiated
only by case in that way, as it will most likely serve only to confuse,
although WS3 will understand the difference.

• All time units are generally assumed in this guide to be ‘virtual seconds’, or
in terms of ‘virtual seconds’. It actually makes no difference to WS3 what
one assumes the time units to be, but I generally refer to them as virtual
seconds as that is a convenient time unit which seems appropriate in most
cases. However, some aspects of the system will have ‘sensible’ default
values if they are not specified in the input file, and these default values
are based around the assumption that the virtual time units are seconds.
Also, whatever time unit one uses, one must be consistent throughout an
input file or WS3 will not produce the desired results.

• Since a WS3 input file is merely an XML file, XML-style comments can
be used anywhere that they are normally valid in an XML file. Comments
start with the string <!-- and end with --> and they can span multiple
lines. An example has already been used in figure 1 on the preceding page.

8.2 Input File Elements

A well-formed WS3 XML input file consists of a single <system> element, with
various attributes and subelements.

The <system> element must contain xmlns and xmlns:xsi attributes ex-
actly as they are in figure 1 on the facing page. There are also various non-
compulsory attributes of the <system> element:

• defaultTTL — The time-to-live value that is initially assigned to each
message in the system. This is an integer greater than zero. The default
value, if the attribute is not specified, is 32. See section 8.6 on page 14 for
more information on time-to-live values.

• dataDumpPeriod — Specifies how often in virtual seconds WS3 dumps out
data. It should be an integer greater than zero. The default value, if the
attribute is not specified, is 1. Data dumping is described in more detail
in sub-section 9.1 on page 15.

• traceLevel — Specifies the level of tracing which WS3 will use when
running this simulation. This should be a integer which ranges between
0 (no tracing) and 4 (full tracing). A number higher than 4 will produce
nothing extra beyond full tracing. A number lower than 0 will cause an
error. See subsection 9.2 on page 15 for more information on tracing.

• resetStatsPoint — If present, specifies the virtual time point at which
the summary statistics will be reset. This helps the user with obtaining
accurate statistics about the execution, whilst compensating for equilib-
rium. For more information on this, see the section on ‘Equilibrium’ in
the project final report [7]. Must be a number of virtual seconds greater
than zero. If it is absent, or equal to, or less than, zero, the statistics will
not be reset.

c© Andrew Ferrier 2002 Web Server Performance Simulation

8 8 CREATING AN INPUT FILE

There are various sub-elements of the <system> element. Some are compul-
sory and some are optional. They are as follows, and whether they appear or
not, must appear in this order:

• <name> — Specifies the name of input system. This name is not cur-
rently used for anything by WS3 except as a title etc. when outputting
information. It must appear once and only once.

• <runtime> — Specifies the total system runtime in virtual seconds. It has
no default and must appear once and only once.

• <client>, <networknode>, <server> — These elements specify clients,
network nodes, and servers in the simulation system. These three elements
have various attributes and sub-elements. They are similar for each of
three elements so they will be described together in sub-section 8.3. There
must be at least one <client> element and one <server> element in the
system — <networknode> elements are entirely optional.

8.3 System Objects

This sub-section describes attributes and subelements for the <client>, <networknode>,
and <server> elements, collectively known as the system object elements.

There are various non-compulsory attributes for these system object ele-
ments. They are:

• instances — Specifies how many instances of a system object are created.
This should be an integer greater than zero. The default value if the
attribute is not specified is 1. If more than 1 instance is created, then WS3

automatically creates multiple system objects with the same name and will
represent those objects by appending [n] to the end of the name, where
n is the instance number of the system object (numbering starts from 0).
When connections are created to an object, they should still be created
just to the base name of that object, even if there are multiple instances
of that object. Messages will be sent to a random object instance.

• threads — Valid only for the <server> system object. Specifies the
number of concurrent threads operating on the modelled server. Must
be an integer greater than zero. The default value if the attribute is not
specifies is 1. If one sets this attribute, one normally wants to set the
processors attribute as well.

• processors — Specifies the number of processors available on this server.
The number of threads executing concurrently can never exceed this num-
ber. Must be an integer greater than zero. The default value if the at-
tribute is not specifies is 1.

• threadGrain — Specifies the time grain which threads execute for. The
length of time for which one thread can execute without giving up control
to another thread can never exceed this value. Must be a decimal number
of virtual seconds greater than zero. By default this attribute is set to 0.1
virtual seconds.

Web Server Performance Simulation c© Andrew Ferrier 2002

8 CREATING AN INPUT FILE 9

There are also various subelements for the system object elements. Some of
them are compulsory and some are not. They are as follows, and must appear
in this order if they appear:

• <name> — Specifies the name of the system object. This must comply with
the identifier guidelines discussed in section 8.1 on page 6. This element
must occur once and only once.

• <connectto>, <routeto> — These elements specify connections from, and
routes for, the system object. At least one connection must be specified
and zero or more routes can be specified. Connections and routes are
explained in more detail in section 8.4 on the following page.

• <creationDistribution> — Valid only for the <client> element. Spec-
ifies the distribution used for creating the inter-generation times for client
requests. The distribution is specified using a single distribution sub-
element which is one of the elements described in section 8.5 on page 11.

• <serviceTimeDistribution> — Valid only for the <networknode> and
<server> elements. Specifies the distribution used for creating the service
times for network node queues and server queues. The distribution is spec-
ified using a single distribution sub-element which is one of the elements
described in section 8.5 on page 11.

• <destPossibility> — Valid only for the <client> element. Specifies a
server which it is valid for the client to create requests for. In other words,
when a request is created by a client, WS3 picks a random destination
possibility from all those specified by that client (with equal probability).
If only one destination possibility is specified for a client, the client al-
ways generates messages that are destined for that destination possibility.
At least one <destPossibility> subelement must be specified for each
<client> element.

Note: The decision on which server to send a message to is made inde-
pendently and before any decisions on how to route the message based
on <connectto> and <routeto> elements (which are explained in more
detail in section 8.4 on the next page).

• <queueLength> — Valid only for the <networknode> and <server> ele-
ments. Specify the length of the incoming message queue (not including
the message currently being processed). Can be either a integer value
greater than zero or the special value infinite, which ensures that queue
is of infinite length. Obviously this is a modelling aspect which would not
exist in the real world, but it is useful if one is unsure what the maximum
queue length should be or one wishes to model a system in such a way
that one can relate it to queueing theory easily. This element must appear
once and only once.

• <drop> — Valid only for the <networknode> element. The value of the
element must be a number between 0 and 1. Represents the probability
that the network node should ‘drop’ any given message which it is asked
to process.

c© Andrew Ferrier 2002 Web Server Performance Simulation

10 8 CREATING AN INPUT FILE

C1 C2

N1

S1

Figure 2: A simple example of a web client-server network

8.4 Connections and Routes

Each system object must have at least one outgoing ‘connection’ (although one
can have as many as desired) and has zero or more outgoing ‘routes’. A connec-
tion models a physical connection between two system objects — for example,
if one were modelling a simple system with two PC (Personal Computer)s con-
nected directly to the same hub on a simple LAN (Local Area Network), one
acting as a web server (call it S1), and the other as a web client (call it C1),
then one would probably model the link between these two with one ‘connec-
tion’ in WS3 (though other models are possible which would be equally valid).
Connections are always one-way, so in this case one would have two ‘connection’
objects — one attached to the client, going to the server, and one attached to
the server, going to the client.

A route allows one to build more complex systems. If one had only two
system objects, a route would be useless, but if there are more than two system
objects, routes allow one to specify ways of getting from one system object to
another, via another third party system object (or possibly more than one third
party), even when there is no physical ‘connection’ between the two.

For example, say one extended the previous example so that there were two
client hosts (call them C1 and C2) on the LAN, with the hub now modelled
separately as a network node object (N1), and still with one server (S1). This
example is shown in figure 2.

Ignoring the return journey from the server to the client to keep things
simple, the way one would typically model the physical ‘connections’ for this in
WS3 is:

• There is a physical ‘connection’ from C1 to N1.

Web Server Performance Simulation c© Andrew Ferrier 2002

8 CREATING AN INPUT FILE 11

• Similarly, there is a physical ‘connection’ from C2 to N1.

• There is also a physical ‘connection’ from N1 to S1.

However, this is inadequate for WS3 as it stands: if C1 generated a request
to be sent to S1, WS3 would not know the route it should take: all it knows
are the targets of the immediate neighbours that it has physical ‘connections’
to. Hence we need to create some ‘routes’:

• Create a route at C1 where the destination is S1 and the route to take is
via N1.

• Similarly, create a route at C2 where the destination is S1 and the route
to take is via N1.

This would solve the problem: when C1 created a request to be sent to S1,
for example, WS3 would have a route whose ultimate target is S1, even though
C1 does not have a physical connection to S1. Thus WS3 would first sent the
request to N1 where it would be queued on N1’s incoming queue. When N1 got
round to dealing with the request, it would know how to send it to S1 because
it has a physical connection to get it there. If there was no physical connection,
N1 could sent the packet on again if it had a route which had the target S1
(although in our simple example it did not).

If this is confusing, think of connections and routes in the following way:

• A connection is attached to a source system object and has one parameter:

– The name of the target system object.

• A route is attached to a source system object and has two parameters:

– The destination, which is the ultimate target for messages.
– The route, which is the name of an object the source object has a

connection to — the next ‘hop’ which will bring the message ‘closer’
to the target.

Connections and routes are created between system objects by placing <connectto>
and <routeto> elements inside the appropriate system objects in the input file.
It is easiest to show this with an example (we will use the same setup as before,
with a four-system-object network). The partial specification is shown in 3 on
the next page.

8.5 Distribution Types

WS3 supports a variety of statistical distributions which can be used for spec-
ifying client request generation, network node service time, and server service
time. Each <creationDistribution> and <serviceTimeDistribution> ele-
ment must contain a specification for one, and one only, distribution. One of
the following distribution elements can be chosen:

• <constant> — This is a very simple distribution, that returns the same
value every time it is used. For example, if one wants to model a client
which generates a new request every 10 seconds, one would specify the
<creationDistribution> of the client as in figure 4 on page 13.

c© Andrew Ferrier 2002 Web Server Performance Simulation

12

1 <client>
2 <name>C1</name>
3 <connectto>N1</connectto>
4 <routeto>
5 <destination>S1</destination>
6 <route>N1</route>
7 </routeto>
8

9 <!-- other specification elements -->
10

11 </client>
12 <client>
13 <name>C2</name>
14 <connectto>N1</connectto>
15 <routeto>
16 <destination>S1</destination>
17 <route>N1</route>
18 </routeto>
19

20 <!-- other specification elements -->
21

22 </client>
23 <networknode>
24 <name>N1</name>
25 <connectto>S1</connectto>
26

27 <!-- other specification elements: the network node needs
28 no routes as it has a direct connection to S2 and
29 we are not concerned about the return journey in
30 this example -->
31

32 </networknode>
33 <server>
34 <name>S1</name>
35

36 <!-- other specification elements: we have specified no
37 connection for the server as we are not
38 concerned about the return journey in this
39 example: but this would not be adequate for
40 a real WS3 input file as every system
41 object must have at least one outgoing
42 connection -->
43

44 </server>

Figure 3: An example of how to use the <connectto> and <routeto> elements

8 CREATING AN INPUT FILE 13

<creationDistribution>
<constant>10</constant>

</creationDistribution>

Figure 4: An example use of the <constant> distribution.

• <exponential> — Defines an exponential distribution, which follows the
following formula:

X = −ρ× ln r (1)

where X is the variate, ρ is the parameter, and r is the randomly generated
value.

The single parameter is the average rate for the distribution. For example,
if the XML in figure 5 were used in a <client> element, then the client
would create 10 requests every virtual second.

<creationDistribution>
<exponential>10</exponential>

</creationDistribution>

Figure 5: An example use of the <exponential> distribution.

• <uniform> — This element defines a uniform distribution, which returns
values that are distributed uniformly over the interval specified. For exam-
ple, if one wants a client to generate requests uniformly between very 3 sec-
onds and every 5 seconds, one would specify the <creationDistribution>
of the client as in figure 6.

<creationDistribution>
<uniform>

<lbound>3</lbound>
<ubound>5</ubound>

</uniform>
</creationDistribution>

Figure 6: An example use of the <uniform> distribution.

• <geometric>, <erlang>, <positiveNormal>, <weibull>, <pareto> —
These distributions are all used in a very similar way to the distributions
above. For the sake of conciseness, I have not detailed how each works,
but they are all standard statistical distributions and there is plenty of
information available for each one [9, 10, 11]. The Geometric and Pareto
distributions only have one parameter each, which is included directly in
the distribution element (similar to that in figure 4). The other three
extra distributions use the parameters shown in table 1 on the following
page.

c© Andrew Ferrier 2002 Web Server Performance Simulation

14 9 RUNNING WS3

Distribution Name Parameter 1 Parameter 2
Erlang <k> <theta>
Positive Normal <mu> <sigma>
Weibull <alpha> <beta>

Table 1: Parameters for statistical distributions in WS3

WS3 does not actually support an ‘instantaneous’ distribution, where mes-
sages are routed instantly. However, one can be emulated, for most practical
purposes, by creating a <constant> distribution and setting the routing time
to be a value considerably smaller than any other time period used in the sim-
ulation specification. Bear in mind that although this works, it can slow down
the simulation considerably.

8.6 Time-to-live Expiry

All messages have a TTL (Time-to-Live) value. For each message, it starts off
at 32, unless you specify a different value for the defaultTTL attribute (which is
attached to the <system> element). Each time a message is routed by a network
node, the TTL value is decremented. If it reaches zero, then the message is
discarded (though WS3 produces a warning and the drop is recorded).

8.7 Constraint Enforcement

The XML Schema that is supplied with WS3 enforces a number of constraints
on the input files which WS3 will accept. Most of these are common sense and
they are fully specified in the XML Schema file itself, so they will not be fully
detailed here. However, a quick summary of some of the more important ones
follows:

• Item names must be consistent across the input file. For example, one
cannot specify a <connectto> element which connects to a system object
that does not exist.

• Item names must conform to the identifier guidelines found in subsec-
tion 8.1 on page 6.

9 Running WS3

To run WS3, simply issue the following command4:

java -jar ws3.jar inputfile.xml ../ws3.xsd

It is possible that this command may not execute correctly if another version
of the Xerces parsing classes are installed on the system you are using, as is the
case in DoC for example. In this case, you will have to execute WS3 via the

4The ../ preceding the schema filename is necessary due to a bug in Java. You will always
need to adjust this so that is points to the schema in the directory above the directory the
schema is actually in.

Web Server Performance Simulation c© Andrew Ferrier 2002

10 INTERPRETING THE OUTPUT OF WS3 15

compiled class file rather than via the jar file 5. Execute the following command
from the directory where you installed WS3 6:

java -classpath .:xerces.jar doc.ajf98.websim.WebSim
inputfile.xml ../ws3.xsd

In the above commands, replace wsthree.jar with the location on your
system of the WS3 .jar file. Replace inputfile.xml with the location of
the desired XML input file specifying the system you wish to simulate, and
inputschema.xsd with the location of where the supplied XML schema file is
(typically the same directory as the .jar file) — but with ../ prefixing it.

The Java virtual machine will initialize, and load and run WS3. WS3 will
execute, outputting extra information according to the options you specified in
the XML input file, and then terminate. It may output a number of files, as
explained in greater detail in section 10. If you want to abort the simulation
whilst it is still executing, the key combination Ctrl-C should achieve this on
most systems.

9.1 Data Dumping

WS3 has the facility to dump data on the system status at certain user-specified
intervals. These intervals are specified by the dataDumpPeriod attribute of the
<system> element. This attribute specified how often data is dumped, in virtual
seconds. The default is every 1 virtual seconds.

The data is dumped to a file which has a similar name and the same location
as the input XML file, but has the string ‘ dump.csv’ appended to the end. The
name of this file is printed on the screen during the execution of WS3.

9.2 Tracing

WS3 has the facility to output a trace file during the execution of the simulation.
This trace file describes actions that are occurring in the simulated system. It
can help you to understand how the simulation works if you are unsure, and
can also be useful if you are not getting the results you expect.

The trace file is created if the traceLevel attribute of the <system> element
is greater than 0 (see sub-section 8.2 on page 7). The level of detail in the trace
file is specified by that attribute. Experiment with the value of the attribute to
get the level of detail you want.

The trace file is automatically created with a similar name and the same
location as the input XML file, but has the string ‘ trace.txt’ appended to
the end. The name of this file is printed on the screen during the execution of
WS3.

10 Interpreting the Output of WS3

WS3 prints summary output on the screen once it is finished. This summary
output should be self-explanatory to anyone familiar with simulation. It also

5This problem is due to a limitation in the way jar files work — most Java virtual machines
ignore the CLASSPATH environment variable when executing a jar file.

6You may have to adjust the syntax of the command slightly for your system.

c© Andrew Ferrier 2002 Web Server Performance Simulation

16 11 REFERENCES

prints tracing output as explained in sub-section 9.2 on the preceding page,
which should be equally self-explanatory. Data is dumped to a CSV (Comma
Separated Variables) file (as explained in section 9.1 on the page before, and this
data can be imported into spreadsheets or data analysis tools. Each row repre-
sents a discrete point in virtual time, with the left-hand-most column indicating
what virtual time that was. Each column represents a measurable parameter
of a system object at that point in time. The first row of the CSV contains
headings for these columns which should also be self-explanatory.

For more information on how the output of WS3 works, see the full final
report for this project [7].

11 References

[1] Apache. Xerces 1.1.4 Software. A JAXP-compliant Java XML Parsing
toolkit.
URL http://xml.apache.org/xerces-j/index.html

[2] Sun’s Java Page.
URL http://java.sun.com/

[3] W3C. XML (eXtensible Markup Language).
URL http://www.w3.org/XML/

[4] Stallman, Richard and McGrath, Roland. GNU Make.
URL http://www.gnu.org/software/make/make.html

[5] Cygwin. A Unix-like environment for Windows. It can be used to compile
WS3 on Windows using the supplied makefile.
URL http://www.cygwin.com/

[6] Download Extensions (2002).
URL http://java.sun.com/docs/books/tutorial/ext/basics/
download.html

[7] Ferrier, Andrew. MEng Individual Project — Web Server Performance
Simulation (2002). The website for this project and the associated software
(WS3). Contains downloadable reports, program binaries and source code,
and other related items.
URL http://www.new-destiny.co.uk/andrew/project/

[8] XML Spy. An XML editing suite.
URL http://www.xmlspy.com/

[9] Lewis, T.G. Distribution Sampling for Computer Simulation. Lexington
Books, 1975. ISBN 0669971391.

[10] Field, Tony. Simulation and Modelling (2000). Lecture notes from Simu-
lation and Modelling course, lectured by Tony Field, 1999/2000 academic
year.
URL http://www.doc.ic.ac.uk/~ajf/Teaching/Simulation.html

[11] Banks, Jerry, Carson II, John S., Nelson, Barry L. and Nicol, David M.
Discrete-Event System Simulation. Prentice Hall. ISBN 0130887021. A
good, detailed, up-to-date book.

Web Server Performance Simulation c© Andrew Ferrier 2002

http://xml.apache.org/xerces-j/index.html
http://java.sun.com/
http://www.w3.org/XML/
http://www.gnu.org/software/make/make.html
http://www.cygwin.com/
http://java.sun.com/docs/ books/tutorial/ext/basics/download.html
http://java.sun.com/docs/ books/tutorial/ext/basics/download.html
http://www.new-destiny.co.uk/andrew/project/
http://www.xmlspy.com/
http://www.doc.ic.ac.uk/~ajf/Teaching/Simulation.html

13 LIST OF ACRONYMS 17

12 Glossary

makefile A makefile makes it easier to build a program or parts of a program.
WS3 is supplied with a makefile which uses GNU make [4].

page 3

schema A ‘schema’ in general is a set of constraints, or a layout, for a set of
data. In the context of the this project and WS3, a schema normally refers
to an XML Schema.

page 6

XML Schema A ‘schema’ which constrains the content of an XML file.

page 3

13 List of Acronyms

CSV Comma Separated Variables A record-based file where each
new field is delimited by a comma, and each record is delimited
by a new line. They can be used for exchanging information
between spreadsheets and similar programs.

DOM Document Object Model An interface for accessing and up-
dating documents, such as those written in XML.

GNU GNU’s Not Unix A free software system.

JAXP Java API for XML Parsing A method for accessing and up-
dating XML documents in the Java programming language.

LAN Local Area Network A network typically with no more than
a few hundred hosts, distributed over a small (local) area, at
most typically a building or two.

PC Personal Computer A small computer designed primarily for
personal use.

TTL Time-to-Live A TTL value is normally used in network to
avoid problems caused by network routing loops: a TTL value
is decremented each time a packet or message is routed — if it
reaches zero, the packet or message is discarded. This involves
over-flooding of the network.

WS3 emulates TTL values for all messages.

WS3 Web Server Simulation System The name of the software
written for this project. The acronym WS3 is sometimes writ-
ten as WSSS.

WSSS Web Server Simulation System See WS3.

XML eXtensible Markup Language A generalised markup language.
See [3] for more information.

c© Andrew Ferrier 2002 Web Server Performance Simulation

	1 Licencing
	2 An Overview of WS3
	3 System Requirements
	4 Installing WS3
	4.1 Installing on Unix/Linux
	4.2 Installing on Windows
	4.3 Warning About Installation on any Platform

	5 File Structure Once Installed
	6 Testing the Install of WS3
	6.1 Testing on Unix/Linux
	6.2 Testing on Windows
	6.3 Randomisation Test

	7 Rebuilding the Javadoc Documentation
	8 Creating an Input File
	8.1 Points to be Noted about Input Files
	8.2 Input File Elements
	8.3 System Objects
	8.4 Connections and Routes
	8.5 Distribution Types
	8.6 Time-to-live Expiry
	8.7 Constraint Enforcement

	9 Running WS3
	9.1 Data Dumping
	9.2 Tracing

	10 Interpreting the Output of WS3
	11 References
	12 Glossary
	13 List of Acronyms

