
WEB SERVER PERFORMANCE SIMULATION:
FINAL REPORT

ANDREW FERRIER
Supervisor: Peter Harrison

Department of Computing
Imperial College

London

Version 1.0
(software version 1.0)

Abstract

This report documents my 4th Year MEng Individual Project, which was on
the subject of ‘Web Server Performance Simulation’. There were two parts to
the project:

The first part involved writing a program, which I called WS3 (Web Server
Simulation System), using the Java programming language, which allowed the
simulation of a generalised web serving system by accepting a specification for
it (specifying clients, the network, and servers) in XML (eXtensible Markup
Language). The initial design for WS3 was exceeded and I added many extra
features. WS3 is available for free use [1].

The second part involved using WS3 to investigate some general issues of
web server performance and setup. I came to the conclusions that: the proces-
sor/thread ratio on a server greatly affects the client response time but that this
relationship is complex and simulation software such as WS3 should be used to
investigate specific situations; the question of whether ‘large’ or ‘small’ servers
are more efficient is difficult to answer and requires detailed simulation; the
use of different statistical distributions in a program such as WS3 can produce
unexpected results and they must be chosen with care; the speed of simulations
such as WS3 depends greatly on the number of objects being simulated and that
this speed is directly proportional to the number of those objects; and that use
of the Pareto distribution can improve the realism of a simulation but means
that it can take a long time to converge to equilibrium.

3

Acknowledgements

I’d like to acknowledge the help of my supervisor, Peter Harrison [2], in the
execution of my project. His comments on my project were encouraging and
helped me enhance an idea which I was already keen on.

I’d like to thank Uli Harder [3], who was a supervisor for the first half of
my project, who gave me much valuable input and useful ideas, and explained
areas I should give attention to.

I’d also like to thank Tony Field [4], for allowing me to use and modify
his simulation library, and for helping me to arrange my project supervision
originally.

Finally, I’d like to thank my personal tutor — Fariba Sadri [5] — and my
friends and family, for helping me through the last four years at Imperial College.

5

Contents

I The Project 11

1 Introduction 13
1.1 Aims . 13
1.2 Project Code and Reports . 14
1.3 Knowledge Assumed . 14
1.4 Report Outline . 14

2 Background 17
2.1 Performance for Clients and Servers 17
2.2 Current Practice and Research 18
2.3 Why Use Simulation? . 20

II The Software 23

3 Specification 25
3.1 Summary Specification . 25
3.2 Input . 25
3.3 Simulation and Execution . 27
3.4 Output . 28

3.4.1 Summarised Output . 28
3.4.2 Trace Output . 28

4 Design 29
4.1 General Design Assumptions . 29

4.1.1 Internal Design Assumptions 29
4.1.2 External and Interface Design Assumptions 30

4.2 Class Structure . 31

5 Implementation Issues 35
5.1 Programming Language for Implementation 35

5.1.1 Input File Format . 36
5.2 Changes to Specification and Design 37
5.3 Java Simulation Toolkit . 38
5.4 Randomness . 39
5.5 Equilibrium . 41
5.6 Documentation . 42
5.7 Standards . 42

7

8 CONTENTS

6 Testing 43
6.1 TST-001 . 43
6.2 TST-002 . 46
6.3 TST-003 . 46
6.4 TST-004 . 47
6.5 TST-005 . 47
6.6 TST-006 . 48
6.7 TST-007 and TST-008 . 48
6.8 Non-File-Suite Testing . 49

III Uses for the Software 51

7 Evaluation 53
7.1 Notes About the Input Files . 53
7.2 Web Serving Guidelines . 53

7.2.1 Size of Machines Used . 53
7.2.2 Server Threading . 56
7.2.3 Distributional Differences 57
7.2.4 Real-world Example . 59

7.3 WS3’s Speed . 61
7.4 WS3’s Accuracy . 63

8 Conclusions 65
8.1 Construction of WS3 . 65
8.2 General Conclusions about Web Systems and WS3 66
8.3 Strengths and Weaknesses of WS3 and the Project 67

8.3.1 Strengths . 67
8.3.2 Weaknesses . 67

8.4 Future Extensions . 68
8.4.1 WS3 Features . 68
8.4.2 Analysis of Web Serving 69

IV Appendices 71

A User Guide 73
A.1 Licencing . 73
A.2 An Overview of WS3 . 73
A.3 System Requirements . 74
A.4 Installing WS3 . 75

A.4.1 Installing on Unix/Linux 75
A.4.2 Installing on Windows . 75
A.4.3 Warning About Installation on any Platform 76

A.5 File Structure Once Installed . 76
A.6 Testing the Install of WS3 . 76

A.6.1 Testing on Unix/Linux . 76
A.6.2 Testing on Windows . 76
A.6.3 Randomisation Test . 77

A.7 Rebuilding the Javadoc Documentation 77

Web Server Performance Simulation c© Andrew Ferrier 2002

CONTENTS 9

A.8 Creating an Input File . 77
A.8.1 Points to be Noted about Input Files 77
A.8.2 Input File Elements . 78
A.8.3 System Objects . 79
A.8.4 Connections and Routes 81
A.8.5 Distribution Types . 83
A.8.6 Time-to-live Expiry . 85
A.8.7 Constraint Enforcement 85

A.9 Running WS3 . 85
A.9.1 Data Dumping . 86
A.9.2 Tracing . 86

A.10 Interpreting the Output of WS3 87

B Network Diagram Conventions 89

C UML Diagrams 91
C.1 Conventions . 91

D Bibliography 93

E Glossary 99

F List of Acronyms 101

c© Andrew Ferrier 2002 Web Server Performance Simulation

Part I

The Project

11

Chapter 1

Introduction

1.1 Aims

This project was about investigating web server performance. I did this by
constructing software, which I call WS3 (Web Server Simulation System), to
simulate web serving systems, and then using this software to simulate fictional
systems and analyse them.

Web Server Performance is an important issue. More and more organisations
are setting up web servers, and many are notorious for producing inadequate
performance [6, 7]. Sometimes this lack of performance is due to overly large
or complex pages, sometimes it is due to poor network (Internet or intranet)
connectivity, but sometimes it is also due to inadequate server configuration,
whether that be the hardware or software1.

The latter issue interested me, and I wanted to see if I could come up with a
tool and also some general guidelines for configuring web serving systems. Thus
I decided to do this project, and wrote simulation software to help in making
server configuration decisions.

I had two primary aims for my project:

• To write a program to enable a user to simulate an a web server system,
which consists of web servers, clients, and a network. This is documented
in part II.

• To use this software with some fictional web-server system specifications
to come up with some general guidelines and answers to questions about
the most efficient way to setup and configure a web serving system. This
is documented in part III.

There are many questions which I would have liked to answer about web
serving systems. I decided to pick a few specific ones which I would at-
tempt to answer, investigating other aspects if time allowed. The primary
questions I decided to investigate were:

– Whether it is more efficient and reliable, generally, to use many small
interconnected serving machines (a web server ‘farm’ [8]), or to use
one or only a few large serving machines.

1Background issues are discussed in greater depth in chapter 2.

13

14 CHAPTER 1. INTRODUCTION

– How many synchronous threads should exist on a single server system
for maximum performance.

These questions are studied in chapter 7 (Evaluation).

1.2 Project Code and Reports

This project has a website, with all of my project reports (the outsourcing
report, the progress report, and this report) available for download (see [1]).
Source code for WS3 is not supplied in this report, but both source code and
compiled executable code are available for download from the website in a single
package. Contact details are also available there.

For Department of Computing users, all of this content is also available in
the directory ~ajf98/project/.

The latest version of the software at the time of writing is 1.0.

1.3 Knowledge Assumed

This report assumes the reader is familiar with:

• What a web server and client are; the differentiation between them and
how they work together to form the WWW (World Wide Web), as well
as what the TCP/IP (Transmission Control Protocol/Internet Protocol)
and HTTP (Hypertext Transfer Protocol) protocols are and how they
work generally [9, 10]. However, detailed knowledge about the TCP/IP
and HTTP protocols is not assumed.

• The basic principles of simulation and modelling; the difference between
process-based and event-based simulation. Also, the basic principles of
queueing theory [11, 12].

• An understanding of object-oriented programming and Java [13].

• The basic syntax and principles of XML [14]. This is necessary to un-
derstand the specification for the input file to the software. XML is very
quick and easy to understand however.

• The basic syntax of UML (Unified Modelling Language). UML diagrams
are used in this report. A basic introduction to UML, with links to more
information, can be found in appendix C.

1.4 Report Outline

In this report, there are the following chapters:

Chapter 2: Explains the background to my project: the problems and issues
which led to my decision to do this project, the current state of progress
in this subject area, and why I used simulation.

Chapter 3: Provides a high-level specification for WS3; similar to the specifi-
cation found in the outsourcing report [1].

Web Server Performance Simulation c© Andrew Ferrier 2002

CHAPTER 1. INTRODUCTION 15

Chapter 4: Explains the design for the internal software structure of WS3.

Chapter 5: Explains the issues that arose during the implementation of WS3.

Chapter 6: Describes the testing that I applied to WS3.

Chapter 7: Investigates the questions posed in section 1.1 on page 13, and
discusses the speed and accuracy of WS3.

Chapter 8: Summarises what the project achieved; the construction of WS3;
and the conclusions reached with the aid of WS3.

The appendices contain, amongst other items, a glossary and the bibliogra-
phy.

c© Andrew Ferrier 2002 Web Server Performance Simulation

Chapter 2

Background

In this chapter I investigate the background issues behind this project1, by:

• Discussing performance issues for clients and servers of the WWW.

• Looking at the current state of progress in the area of web server simulation,
and related areas.

• Explaining why I am using simulation as a tool to explore web server perfor-
mance.

2.1 Performance for Clients and Servers

Web Server Performance is an issue that has come to prominence in the last
decade or so, since the invention of the web in late 1990 by Tim Berners-Lee at
CERN [15].

There are two main ways that one can look at web server performance [16]:

• From the user (client)’s perspective.

• From the server’s perspective.

From a user’s perspective, all that matters about web server performance
is the speed with which web pages are retrieved and how they then display on
their client.

In fact, it has been shown that for client/server systems in general (not just
the web), sub-second response items to user actions are near-essential for users
to feel that the system is responding quickly enough not to interrupt their flow
of thought [17]. Even if one doesn’t agree with this, it is obvious that users
prefer short response times and it will benefit all concerned if these occur [18].

From a server’s perspective, what matters is the ability of the server to han-
dle as many requests as clients demand, synchronously, without unnecessarily
delaying responses to the clients (hence causing them to become frustrated), or
building up a backlog of clients wishing to use the server.

1Some of the material from this chapter was taken from my outsourcing report, available
at the project website [1].

17

18 CHAPTER 2. BACKGROUND

Obviously ensuring fast response times for clients and sufficient server ca-
pacity are not totally distinct problems: to have a coherent ‘World Wide Web’
which works for everyone, performance has to be good all round.

Hence, in this report, and this project, I am interested in two related issues:

• The total response time for a client when making a request.

• Sizing and capacity planning for the web server, to ensure that the client
response time is low, and efficient use is made of the server resources.

Both of these depend on two general factors: the network in-between the
client and the server, and the capabilities of the server hardware and software2.

In this project I investigated both of these factors, but the stronger focus
was definitely on the server capabilities. Network performance is a very large
topic in itself, and it is worth bearing in mind that even TCP/IP networks carry
many different types of traffic, not just HTTP, and hence network performance
issues are not just issues with HTTP. This is a subject worthy of investigation
all by itself and so one I didn’t attempt to embark upon in my project.

Note: When I refer to client-end performance, I will not be looking at perfor-
mance after pages have been retrieved. The ability of web browsers to perform
animation, run client-side code, or use interactivity front-ends such as Macro-
media Flash [19] is not within the remit of this project.

2.2 Current Practice and Research

Computer-based simulation is a fairly well-studied subject, and there are many
books, papers, and other sources, which document the area from many perspec-
tives. One of the better ones is [20], a fairly modern and practical book which I
have found quite useful. However, there are many others, of which [21, 22, 23, 24]
are only a few. There are also statistics books specifically geared towards cre-
ating computer simulations — for example, [25] has some fairly technical and
thorough information on various different kinds of distributions.

Performance simulation, in particular, has been an area of research of some
time, because simulation is often an ideal tool for assessing and evaluating per-
formance [26, 27].

It does not appear that much progress has been made in the area specifically
of web server simulation, however3 — one of the reasons why I decided to do
this project, and the main reason this section is sadly lacking in volume! There
are simulation tools which could be used to model web serving systems, such as
some of those listed by the Simulation Software Survey [28], but most of these
suffer from these flaws:

• They are too general, not being specific to web serving. I see this as a flaw
because it means that more work has to be done to create a simulation
which models a web serving system.

2Normally the capabilities of the client are irrelevant because even the simplest client will
have the ability to receive traffic as fast as it can be sent by the network and the server,
and clients typically only retrieve a few files simultaneously. Thus I did not model the client
capabilities with WS3 extensively.

3Ironically and ‘unhelpfully’ (at least when searching for information!), there seem to have
been many people who have tried web-based simulation — but not related to actual simulation
of web systems themselves.

Web Server Performance Simulation c© Andrew Ferrier 2002

CHAPTER 2. BACKGROUND 19

• They have a graphical front-end; this is something I wanted to avoid in
creating the simulation software. An example of a tool with a graphical
front-end is Tony Field’s SwingSim application [4] — which allows one to
create simulations using his simulation toolkit (which I used for WS3),
with a GUI (Graphical User Interface) Java drag-and-drop interface. This
kind of tool has it’s uses, but it was not what I wanted to create for my
project, because:

– SwingSim is primarily designed for understanding basic queueing sys-
tems; the user can very easily change parameters and re-run the sys-
tem. I wanted to create a tool with a very specific purpose: as a web
server sizing tool.

– SwingSim has a drag-and-drop GUI interface. I wanted to create
a tool with a batch interface: create the input file, run it through
the simulation software, read and analyze the output. The drag-
and-drop interface is easier to use, and is ideal for learning about
queueing systems and queueing theory, but will not scale to very
large or complex systems, whereas I wanted to create a tool that
could do this — where one could easily specify hundreds or thousands
of clients in the system, for example.

Another collection of the simulation software is the listing of Simulation
Software Links [29] — most of the software listed are fairly low-level toolkits
designed for constructing simulation software, rather than simulation software
in itself. Also, most simulation software uses event-based simulation, whereas
I wanted to use process-based simulation because I find it considerably more
intuitive and hence, for myself, I believe that faster development results.

Web server performance appears to be a subject which is discussed in some
circles [30, 31], but this does not often stretch to simulation. One example
of a web serving simulation that has been attempted is [32]. However, this
source does not contain much information on the simulation itself or how it was
implemented — certainly not enough to compare it to what I have done — and
the simulation is not freely available.

Even research in Journals such as the ACM Transaction on Modeling and
Computer Simulation [33] does not turn up much information on web server
simulation — it simply seems to be a subject of little interest, possibly because
it is seen as too complex a way of server sizing for practical purposes. For many
short-lived projects, this may well be true, but my industrial experience teaches
me that projects often exist for longer than originally planned. Thus I think it
is important that creation of a server sizing (also known as capacity planning)
tool for web server systems be attempted.

Progress is being made in related areas. For example, queuing theory has
been used as a tool to model web servers [34], but as I will explain below, this
method can have disadvantages. Papers have also been published on profiling
web usage analysis [35], which is a subject area which can have an impact on
web server sizing, in particular for large projects. This book is quite useful if
one is interested in understanding what users are using a web server and what
they are using on it, which of course one should be if setting up a web server,
but does not help with the direct problem of how to size the web server — in

c© Andrew Ferrier 2002 Web Server Performance Simulation

20 CHAPTER 2. BACKGROUND

a way, knowing about the profiles of your users helps with two other problems:
who to set up your network links to, and what to put on the site itself.

Work has been published on engineering software for the web (i.e. how to
structure programmatic web-sites) [30]. This is once again useful to those at-
tempting to size web servers as it helps them to understand what programmatic
demands sites will place on their servers, but it is not of direct relevance to web
server modelling.

Progress is also being made in the area of data mining and retrieval on the
web — [36] is but one example. These are traditional subject areas which have
been around for a while and are now being investigated in the context of the web.
[37] contains information on servers farming out search tasks to child servers,
for example. However, this has more to do with search engines, web indices,
and other related technologies, then the sizing and creation of web server(s).

So, although sadly there is not much to document in the area of web server
simulation itself, this was the main reason that I felt that it would be useful to
try to write a web server simulation myself. Whilst I did not hope to make it in
any way definitive or complete, I did document the improvements that would
have to be made to further improve it (see section 8.4 on page 68).

2.3 Why Use Simulation?

In order to explain why I used simulation, as opposed to other methods of analy-
sis, such as direct mathematical modelling using queueing theory, to investigate
the performance of web servers, I will examine four potential strategies which
can be used when deciding how to size web servers (of which only the first two
tend to be used in practice):

1. Use rules-of-thumb; calculate using approximate formulae but always over-
estimate to make sure one has enough capacity. This is the approach
normally taken in industry, and is easily subject to obfuscation and con-
fusion, since it is based on empirical measurements. This observation is
based mainly upon personal experience.

2. Use real measurement; set up a real system, with a real web server and
some real clients, attached with a network, and install software on them
to make many simultaneous requests for files. This is a typical method for
benchmarking web serving systems. Examples of software that do this are
Apache’s Flood tool [38] and httperf [39]. These do, to a certain extent,
help with deciding the load that a server can handle, and are sometimes
used for larger projects. However they have several disadvantages:

• Instead of having many thousands (say) of distinct clients, one will
typically have tens or maybe hundreds, making many more requests
than they typically would to produce the same demand. However,
one has to be absolutely certain that these clients can handle the load
of making that many requests. A typical client only handles a few
requests simultaneously, which is trivial. If the client handles more
than this, it may become bogged down in network code and will
hence not produce realistic timings — in other words, one cannot
necessarily extrapolate the results as one would desire.

Web Server Performance Simulation c© Andrew Ferrier 2002

CHAPTER 2. BACKGROUND 21

• Typically such machines are connected together on a LAN (Local
Area Network) because it is prohibitively expensive to set up a more
realistic network. This is unrepresentative of most web serving sys-
tems: although it may reliably test the load on a server designed only
for a small intranet, any server which is serving requests to clients
which are widely geographically spread will have much higher la-
tencies on requests and replies because packets will have to travel
through many switches and routers, possibly encountering delays
along the way, outbound and inbound. This will hence increase trans-
action time for web requests, meaning that server resources are used
up for a lot longer than they are when the clients are on a local LAN
and making the test misleading.

• Sometimes it is not possible to alter a running system to experiment
with different configurations as it is too important — obtaining du-
plicate hardware or a creating a duplicate environment may not be
an option.

Some of these problems can be overcome: for example, it can be arranged
for geographically spread clients to test the server. However, whatever
one does, all real-world testing is very expensive and time-consuming, and
becomes more so the more realistic one attempts to make it, in general [40].
Moreover, for the reasons explained above, it may well produce misleading
and hence possibly dangerous (if the server sizing procedure is important)
results.

3. Use queueing theory to investigate the system. This is very good in the-
ory; however the problem is that it is very mathematically demanding,
requiring quite a lot of mathematical knowledge, which is typically not
available to those setting up web serving systems, and more importantly,
most non-trivial systems cannot be solved exactly or easily. Sadly, this
means that it only has limited application for most real-world systems
and it is not generally used for entire systems — only for sub-systems,
and then often in an informal way [41].

4. Use simulation software to model the system. This is the approach I will
take with this project, and I will explore this further below.

Simulation software has several advantages over the set-it-up-and-see ap-
proach, and I will outline those here in the context of my project:

• One does not require the expense and inconvenience of setting up an actual
system: this can take a long time [11, 40] and be very resource-intensive.
In many cases, it simply would not be done — simulation thus allows one
to explore new possibilities.

• Simulation is a lot less risky than altering an already-existing system:
simply set up a ‘duplicate’ system in the simulation, then alter some of
its attributes.

• It can answer many different questions, easily and quickly, e.g. What
would happen if the attributes of this server were changed? What about
if I double the number of servers? What is the mean value for this wait
time? And so on . . .

c© Andrew Ferrier 2002 Web Server Performance Simulation

22 CHAPTER 2. BACKGROUND

However, simulation software also has some disadvantages:

• It does not produce exact solutions to most problems; solutions are at best
approximate. More detailed simulation models typically produce more
accurate answers, but it is still difficult to determine the absolute accuracy
of those answers. I tried to overcome this by making the simulation model
as specific and detailed as possible. My project being fairly short, I could
not make it as detailed as I would have liked, but I tried to be aware of
this shortcoming. I also discuss accuracy in section 7.4 on page 63.

• Dependent on the simulation software and hardware, determining solu-
tions of sufficient accuracy can be very time-consuming and resource in-
tensive, more so than running the corresponding real system. I was not to
be overly concerned about this, and tried to overcome this problem with
good quality software engineering, hence making my program as fast as
possible. However, whenever it came to a tradeoff between the simulation
quality and the speed of the software, I chose the former — I decided
I simply did not have enough time to focus on the performance of the
software itself as well as the other project objectives (though I did do a
small amount of investigation into the performance of the software — see
section 7.3 on page 61).

• Simulation software only tends to answer specific questions. Finding gen-
eral answers and relationships can be difficult. This is something I was
very aware of in my project when I tried to evaluate WS3 — see chapter
7 for more information on this. Nevertheless, simulation software is very
useful for specific practical situations, which is one of the reasons I wrote
WS3.

Web Server Performance Simulation c© Andrew Ferrier 2002

Part II

The Software

23

Chapter 3

Specification

This chapter gives a specification for WS3 in terms of the input, the output and
the expected behaviour. It doesn’t contain information on the design of WS3 —
that it is in chapter 4. This specification was originally written for my outsourcing
report, and I have duplicated it here, but modified it appropriately for WS3 as it
now stands1. It is written as a specification, assuming that WS3 does not yet exist,
and thus does not refer to WS3 by name.

Not all features and details of WS3 are described in the specification in order to
keep it to a reasonable length, but the important ones are.

3.1 Summary Specification

The simulation software should simulate an arbitrary client-server system based
upon the WWW model, i.e. with clients requesting files from servers via the
HTTP protocol.

The simulation program must be written so as to accept input as specified in
section 3.2, execute as per the description in section 3.3, and produce output as
per section 3.4. This specification avoids discussing issues such as the language
to use for the software and the look and feel of the software (for example,
whether it is a console-based application or a GUI application), and focuses on
the behaviour.

The basic simulation system as specified here simulates three types of ‘system
objects’ — clients, network nodes, and servers. They interact with each other
in the simulation and various parameters from them are measured and should
be output by the simulation software.

3.2 Input

The input to the software should consist of a single XML [14] file which should
specify the complete system. The name of this file shall be specified by the
user to the software. The XML file must be valid according to the XML 1.0
specification [14] and must conform to the WS3 XML Schema supplied with the

1Information on how the specification and design was changed is available in section 5.2 on
page 37.

25

26 CHAPTER 3. SPECIFICATION

software2. Because of this requirement, only an outline of the specification is
given here for the input file because the XML Schema specifies it completely.

The XML file will have the following structure:

• <system>. This element represents a simulation system. There must be
only one of these elements in the file — all other elements are contained
within it. The element is provided only for future-proofing, in case one
wanted to develop the software to allow more than one simulation system
to be specified in the same XML file. This feature is not provided in the
software.

There are then various elements which can appear enclosed within the <sys-
tem> element, which specify objects in the simulation system (these objects are
known henceforth as system objects). These elements are:

• <client>. This element represents one or more instances of a client sys-
tem. The element must have one and only one <creationDistribution>
sub-element, which represents the inter-event time distribution with which
the client makes HTTP requests (in virtual seconds). Requests can be syn-
chronous: a client can make one request and then make another whilst
the first is outstanding.

• <server>. This element represents one or more instances of a server sys-
tem. The element must have one and only one <serviceTimeDistri-
bution> sub-element, which represents the service time for an incoming
HTTP request (in virtual seconds). The server object has the following
attributes unique to it:

– threads, processors, threadGrain — For more information on
these attributes, see sub-section A.8.3 on page 79 of the user guide.

• <networknode>. This element represents one or more instances of a net-
work node. This element must have one and only one <serviceTimeDis-
tribution> sub-element, which represents the distribution of a packet’s
wait time in the node before being sent on (in virtual seconds). Packets
are dealt with in a FIFO (First In First Out) manner.

All of the above system objects have the following common attributes and
elements:

• <name>. An element which identifies the system object. This must be a
unique identifier within the system (not just within this type of object)
to enable inter-system-object connections to be specified (see the common
element <connectto> below). If it is not unique, the software can report
it as an error. This parameter is a non-zero-length string. This attribute
is compulsory.

• instances. This attribute specifies the number of instances of this system
object within the system. This attribute is an integer which is greater than
0. The default if this attribute is not specified is 1.

2This is called ws3.xsd.

Web Server Performance Simulation c© Andrew Ferrier 2002

CHAPTER 3. SPECIFICATION 27

The elements <creationDistribution> or <serviceTimeDistribution>
are used within the <client>, <server>, and <networknode> elements to spec-
ify statistical distributions, and must have one (and only one) of the following
as a sub-element:

• <constant>

• <exponential>

• <uniform>

• <geometric>

• <erlang>

• <positiveNormal>

• <weibull>

• <pareto>

For more information on the syntax of these elements, see the XML Schema
supplied with WS3. For more information on how to use them and what they
mean, see sub-section A.8.5 on page 83 (in the user guide).

The element <connectto> can appear zero or more times inside the ele-
ments <client>, <server>, and <networknode>, and contains the unique sys-
tem name referring to the object that one wants to connect to. This creates
a one-way network connection (if two-way is desired). The element <routeto>
creates a route between two system objects. For more information on the use
of these elements, see the user guide (sub-section A.8.4 on page 81).

3.3 Simulation and Execution

The simulation is initially set up as described in the XML file, so that all system
objects behave at all times as specified there.

The clients generate HTTP requests according to the distributions speci-
fied for them, and send them out onto the network. The network nodes queue
incoming packets and send them onwards, delaying them by their delay distri-
butions. Servers queue incoming requests, serve them according to their service
time distributions, and send replies back to the same client which made the
request — the replies are dealt with by the network nodes on the same basis as
requests. Clients do not queue incoming replies.

Servers with more than one thread execute the threads in parallel, in virtual
time. There is only one input queue for the server, and the threads retrieve the
next request from the head of the queue when they are not busy.

All time is measured in virtual seconds, starting at 0 when the simulation is
started, and the system is executed ‘as fast as possible’ (which may be slower
or faster than real-time depending on the performance of the implementation).

Actual requests and replies do not need to consist of anything.
Routing is done according to the connection and routing information pro-

vided by the user in the input specification. If two routes are possible, the one
the software chooses is undefined.

If there is no possible route from the source to the destination, the software
outputs a warning and ‘drop’ the packet.

c© Andrew Ferrier 2002 Web Server Performance Simulation

28 CHAPTER 3. SPECIFICATION

3.4 Output

3.4.1 Summarised Output

The following items must be output from the software:

• For each client: the number of requests sent; the number and percentage of
replies received; the average response time and the variance of the response
time.

• For each network node and server: the mean utilisation (load) on the
system object. Also, the mean service time for the system object, and the
mean time each message spent in the queue. The length of the queue on
the system object at the end of the simulation; the number of requests
processed and replies sent.

3.4.2 Trace Output

As well as the above summarised output (which should always be produced), the
software should produce trace output. Whether this trace output is produced
or not should be a user-configurable option.

The trace output should contain information on every discrete event that
happens in the simulation system. Exactly what information is outputted is left
as an implementation issue, but at least the following items should be included
for each event:

• The unique name(s) of the system objects involved.

• A descriptive name describing the event.

• The virtual time at which that event occurred.

The trace output should be sorted strictly according to increasing virtual
time.

Web Server Performance Simulation c© Andrew Ferrier 2002

Chapter 4

Design

This chapter describes the design of WS3 — the ‘pure’ software design that I did
before I started to write program code for WS3. Not all aspects of the design are
covered to ensure conciseness but enough is described to give a high-level view1.

Note: Several diagrams in this chapter show abstract class hierarchies, and
other design features of the WS3 software. These diagrams are shown in the UML
graphical modelling language. A very quick introduction to UML is provided in
appendix C on page 91. Also, UML conventions as used in this report are explained
in section C.1 on page 91.

4.1 General Design Assumptions

These were the design assumptions I initially made when I was designing the
system. They are presented primarily to simplify the design of the system
and attempt to keep it consistent. These are in addition to the behavioural
specification outlined for the simulation in section 3.3 on page 27. They are
outlined in a forward looking sense; as if WS3 does not yet exist. There is
necessarily a small amount of repetition in this section from the specification
(chapter 3).

4.1.1 Internal Design Assumptions

• The system is essentially a queueing network, with varying delays at var-
ious points in the system, determined by statistical distributions which I
will put into place.

• The system is constructed of one or more clients, one or more network
nodes, and one or more servers, collectively known simply as nodes or
system objects. The clients, servers, and network nodes will have ‘ports’
which will enable them to communicate data from one to another along
a ‘channel’ via messages — ‘request’ messages will be sent from clients to
servers, and ‘reply’ messages from servers back to clients. These ‘ports’
may not be explicit in the program design, however.

1The design has been modified in a few places to correspond more closely with how WS3

is now

29

30 CHAPTER 4. DESIGN

• When the system is simulated, it will proceed according to a ‘virtual’ time
stream. The name used for the ‘virtual’ time units is actually irrelevant,
but for consistency throughout this report, the program comments, etc.,
I have referred to the virtual time units as ‘virtual seconds’, since this is
how I imagine most users will use them.

• The system will be simulated using ‘process-based’ rather than ‘event-
based’ simulation. This is a conceptual difference in the implementation
which will not (or at least should not) affect the answers given by a sim-
ulation. A process-based simulation models a number of processes (such
as a client, a server, etc.) as concurrent threads or processes in the simu-
lation language. A virtual time stream is maintained independently and
processes voluntarily give up processing control at various points. An
event-based simulation has program code which simulate events in the
system, and these events schedule new copies of themselves on the virtual
time stream.

I found process-based simulation to be far more intuitive, and I was having
difficulty seeing how some of things I wanted to do could be implemented
using event-based simulation. Thus, I decided it would be best if I wrote
the software using process-based simulation, since it was more natural to
me and would thus enable me to write the software more quickly and with
less errors. This seemed far more important than any small performance
benefit I might gain from event-based simulation [11].

• All channels are one-way for the maximum amount of user flexibility; this
allows two system objects to route messages between them in different
ways, depending on which way the message is flowing.

• Servers and network nodes have queues for incoming messages, but not
for outgoing messages. Clients do not have queues at all.

4.1.2 External and Interface Design Assumptions

• The program will be constructed so that it works in a batch-style mode
where the user will input a specification of a system to be simulated, the
program will run, and then it will detailed and summary data about the
simulation. This is a more realistic project than a continuously interactive
simulation, where the user could alter the system specification while the
simulation was running, which might adversely affect the results.

• The program will accept an XML input file which will have a certain
pre-defined structure. This input file will specify the input simulation
completely (as in no order additional input would be required), and will
also specify any extra parameters, optional or otherwise, that the programs
requires to execute the simulation as the user wants. I decided to use XML
for the following reasons:

– It is easy for a human to read and understand it.

– It is comparatively easy for machines to parse it, and parsing toolkits
already exist for many languages.

Web Server Performance Simulation c© Andrew Ferrier 2002

CHAPTER 4. DESIGN 31

• The program will output summary information and detailed information.
The summary information will cover the entire length of the simulation’s
‘virtual time’, whereas the detailed information will be a list of snapshots
at points in ‘virtual time’, measuring certain parameters within the sys-
tem.

• The summary information will initially be output purely to the screen in
a way structured to be easy for a user to read, the detailed information
will be output to a CSV (Comma Separated Variables) file so that it was
easy for a program to parse. I decided upon CSV because:

– Lots of pre-existing programs and applications have the ability to
parse and import CSV data.

– It will be comparatively easy for the program to be written to output
CSV data.

– It is easy to write a CSV parser if it is necessary to import into an
analysis program which does not yet have the ability to import CSV.

4.2 Class Structure

When I was designing WS3, it was obvious to me that I would develop WS3 in
an object-oriented language, and so I bore that in mind during my design. It is
worth admitting that I was fairly sure I would develop in Java before I begun
implementation, because it is a language I am very familiar with, but I made
no firm commitments to a particular language during my design beyond that
I would use an object-oriented language. I made the following decisions about
the internal class structure of WS3:

• Each ‘system object’ — each server, client, or network node — will be
represented with a one-to-one mapping to an actual object in the pro-
gramming language. This will make programming conceptually simple.
Data private to the system object I was modelling will be stored in that
object.

• I will design the system so that it used a generalised simulation toolkit.
Functionality specific to the WS3 simulation will be created by extending
(inheriting from) the classes in the general simulation toolkit. Where this
simulation toolkit came from was a question I decided to deal with later.

So my initial vision for the design on a very high level was essentially that
shown in figure 4.1 on the next page. The classes which inherit from WS3 -
SimulatedObject each represent a type of system object and an instance of
these would be created for each system object I was modelling. The WS3 -
SimulatedObject class itself is a superclass of these to support functionality
common to them.

The classes prefixed with SimToolkit represent parts of the generalised sim-
ulation toolkit. The classes prefixed WS3 represent classes specifically written
to support features common to all simulation objects for WS3. Hence the WS3

class WS3 SimulatedObject inherits the functionality from SimToolkit Simu-
latedObject.

c© Andrew Ferrier 2002 Web Server Performance Simulation

32 CHAPTER 4. DESIGN

SimToolkit_SimulatedObject

WS3_SimulatedObject

Client NetworkNode Server

WS3_System

SimToolkit_Manager

Figure 4.1: Conceptual Design of WS3 — Revision 1

WS3

SimToolkit

Processes

SimToolkit_SimulatedObject

WS3_SimulatedObject

WS3_System

SimToolkit_Manager

Queue

Client NetworkNode Server

Message

11
1

0..*

Figure 4.2: Conceptual Design of WS3 — Revision 2

The SimToolkit Manager class represents a class which has references to all
the simulated objects, and would be able to start and stop the simulation code
contained within them. The WS3 System class is responsible for a complete WS3

simulation system and hence has references to all the relevant system objects.
I then began to refine that design, producing the class structure shown in

figure 4.2. In this larger design, I began to group classes into packages to make
the system easier to understand. I also added in a few classes which the system
would need.

I designed one package, called SimToolkit, which contains the classes for
the generalised simulation toolkit. This ensures that this stayed conceptually
separate. Then all the other classes, which would be specific to the web sim-
ulation, are placed in the package WS3. Within this there is a package called
Processes, which contains all the simulation processes — the ‘active’ processes
which ‘process-based’ simulation models and which the SimToolkit Simulate-

Web Server Performance Simulation c© Andrew Ferrier 2002

CHAPTER 4. DESIGN 33

WS3

SimToolkit

Processes Objects

SimToolkit_SimulatedObject

WS3_SimulatedObject

WS3_System

SimToolkit_Manager

Queue

Client NetworkNode Server

Message

11
1

0..*

Request Reply

Figure 4.3: Conceptual Design of WS3 — Revision 3

WS3

Processes Objects

WS3_SimulatedObject
+acceptMessage(message:Message)
+getName(): String
+runProcess()

WS3_System
+runSimulation()

Client NetworkNode Server

Message

Request Reply

Figure 4.4: Conceptual Design of WS3 — Revision 4

dObject class is the superclass of.
In the second revision, I also added a Queue class to the simulation toolkit.

Instances of the NetworkNode and Server classes have one Queue each which
represent their queue of incoming messages, as discussed in section 4.1.1 on
page 29. The Message class is specifically designed for WS3, and thus is con-
tained within the WS3 package. The Message class represents messages being
sent between the system objects.

My third design revision is shown in figure 4.3. In this revision the WS3

class Message is placed in a sub-package called Objects, made into an abstract
class, and then extended with two subclasses, Request and Reply, to represent
requests from clients to servers, and replies from servers to clients, respectively.
This allows requests and replies to contain different information whilst treating
them as similar objects.

I then started to flesh out the public interfaces of the classes I had designed.
This is shown in figure 4.4.

c© Andrew Ferrier 2002 Web Server Performance Simulation

34 CHAPTER 4. DESIGN

In this revision, I concentrated upon the classes within the ws3 package, since
I was fairly sure that the simulation toolkit would be external to my project, and
thus that the design of it would be mostly out of my hands anyway. Important
methods are added to the WS3 SimulatedObject superclass to support passing
messages between different objects in the system, and other actions.

I had now reached the point where I decided I had done enough ‘pure’
design. From previous experience I knew that there was only so much design
that it was worth doing before moving on to implementation as only through
implementation could I discover some of the more subtle flaws in my design.
The implementation of WS3 is described in chapter 5. If more detail on the
design of WS3 is required, please look at the source code.

Web Server Performance Simulation c© Andrew Ferrier 2002

Chapter 5

Implementation Issues

In this chapter I describe the implementation of WS3.

Initially, this followed the specification described in chapter 3 and the design
described in chapter 4. Some changes were made to the original design and specifi-
cation, and this chapter describes the more important of these1. This chapter also
discusses other issues that arose during implementation.

5.1 Programming Language for Implementation

The first decision I had to make, bearing in mind the design which had already
occurred, was which language to implement the software in. Often this is a
decision which should rightly be left fairly late, so as not to colour the design
process. However, I decided fairly early on to implement the software in Java.
I made this decision because:

• Java is an entirely object-oriented language, which is well suited to simu-
lation, which requires decomposition of the system into logical objects. It
is also a clean and simple language, well suited to rapid development. It
contains an inbuilt threading library which helps when developing systems
with multiple threads of computation, which I would be likely to use for
process-based simulation.

• Tony Field [4] had already written a mostly complete, easy-to-use, and
flexible simulation library in Java, which I had used during my 2nd Year
Simulation and Modelling course. He granted me usage of this and the
right to modify it if necessary.

• Java compilers and runtime platforms are readily available for most hard-
ware and software platforms, thus ensuring that it would be fairly easy to
run my program on different platforms if desired. Portability is normally
fairly good if one sticks to using the standard Java API.

1Bear in mind that the specification and design in chapters 3 and 4 has been updated to
reflect how WS3 is now; so they will match with the changes as described in this chapter, not
with how WS3 was specified originally in the outsourcing report [1].

35

36 CHAPTER 5. IMPLEMENTATION ISSUES

However, I did recognize that Java had some flaws for use as a simulation
language. These were:

• Java is often seen as being a slow language.

However, whilst for example it is no doubt slower in most cases for pure
computation and memory manipulation than, say, compiled C, many re-
cent advances have been made in optimizing Java compilers and JIT run-
time compilers, to the extent that performance is now often similar to that
seen in fully compiled languages.

Moreover, it is now possible to compile Java source code into native code
on some platforms. The tool gcj [42] is one example of a compiler that
does this. This issue is discussed in more depth in section 8.4 on page 68.

• Java’s maths libraries are not very good.

Whilst Java’s maths libraries are not as good as those in some scientific and
maths-oriented languages, such as FORTRAN, it does have some maths
facilities (such as those in the built-in basic data type wrapper classes,
and those in java.math).

Also, I had decided to use a simulation toolkit (see section 5.3 on page 38),
which already contained statistical distribution samplers and the like, and
hence the amount of maths-related code which I expected to have to write
was minimal.

I decided that these two disadvantages were not significant enough to rule
out the use of Java for the software portion of the project. As far as Java being
a slow language is concerned, I decided that, in my experience, the performance
penalty was minor compared with the advantage I would gain from being able
to write WS3 quickly (in my experience, Java is an easy language to program
and debug). Also, as far as the maths libraries were concerned, I decided that
I would have most of what I needed.

5.1.1 Input File Format

I had already decided as part of the design for WS3 that I would use XML as
the input file format. Given that I had decided to use Java as the programming
language, I researched the possibilities for parsing and reading in XML files. I
rapidly discovered that the best way of doing this would be to use a JAXP (Java
API for XML Parsing)-compliant Java XML toolkit. After further research, I
settled upon the Xerces [43] toolkit from Apache because it seemed the most
stable and standards-compliant.

I decided it would be convenient to constrain the structure of an XML input
file with the support of the Xerces toolkit. I did some research on this and
discovered that there were two primary methods: using an XML Schema [44] or
a DTD (Document Type Definition) [45]. I decided to write an XML Schema
which I would supply with WS3. This had several advantages:

• XML Schemas are easier to write than DTDs, and, unlike DTDs, are
written in XML themselves. This also makes them easier to understand
and learn.

Web Server Performance Simulation c© Andrew Ferrier 2002

CHAPTER 5. IMPLEMENTATION ISSUES 37

• XML Schemas have a much greater range of features than DTDs. In
particular, they have better constraint mechanisms. This enables me to
offload a greater level of checking to the XML parser which I would be
using than if I were using DTDs.

• The distribution of the XML Schema with WS3 would enable the user
to look at the XML Schema to understand the exact syntax of the XML
input required. Thus, the file used for validation of the XML input and
the user specification for it would be one and the same thing. This saves
time and effort.

5.2 Changes to Specification and Design

During the implementation of WS3, I was forced to make some changes to
the specification and design for WS3, and I chose to make others2. The more
important of these are as follows3:

• I decided in general that I has relied upon use of attributes (as opposed
to elements) too highly in my original specification of the XML input
file. I made this decision because, upon further research, it became ap-
parent that using attributes was inflexible in an XML document and it
was harder to apply constraints on them with an XML Schema — for
example, the minOccurs and maxOccurs attributes in an XML Schema
could not be applied to an attribute, because an attribute could only
occur a maximum of once for a given element. Thus I changed some
of the attributes to elements, such as the distribution attribute, which
became the <creationDistribution> and <serviceTimeDistribution>
elements (see the user guide in appendix A for more information on the
syntax of this works now).

• When I originally designed WS3, I specified a tracing feature. However,
during my implementation of WS3, I decided to split this into two: a
tracing feature and a ‘data dumping’ feature. The trace output from a
simulation is user-readable: it consists of English statements saying what
the system is doing. The data dumping output is a CSV file containing
information on the state of the system over the course of the execution
of the simulation. More information on the data dumping feature is in
section 5.5 on page 41.

• I added the facility for WS3 to automatically create multiple instances of
a system object — this is specified in the input XML via the instances
attribute. This made simulating large systems considerably simpler.

• I added the ability for servers to have multi-threading and multiple proces-
sors, specified via the threads, processors, and threadGrain attributes.
I made this change so that I could study server threading.

• I added the <queueLength> and <drop> elements as valid elements in the
input file. See the user guide (appendix A) for more information on these.

2The original specification for WS3 can be found in the outsourcing report for this project
[1]. The specification, as modified to reflect how WS3 is now, can be found in chapter 3.

3For more details on how each of these impact the user, see the user guide in appendix A.

c© Andrew Ferrier 2002 Web Server Performance Simulation

38 CHAPTER 5. IMPLEMENTATION ISSUES

• I did not add a Poisson distribution to WS3 as I described in the speci-
fication (chapter 3): I realised that it had been a mistake specifying this
as the Poisson distribution was a discrete distribution, and hence unsuit-
able for a simulation where the distributions are generating random times
which were not discrete.

• I realised that the ‘magic’ routing method that I had placed in the spec-
ification was simply unrealistic: it would be an unnecessary overhead for
WS3 to have to calculate the optimum routes for all messages, and would
lead to complexity problems as the size of the system grew. Thus I de-
cided to simply this by forcing the user to specify the routes themselves,
by using the <routeto> element within each system object specification.
This had the added advantage that the user could now specify ‘unusual
routes’ — for example, a request could take a different path to a reply.

5.3 Java Simulation Toolkit

I re-used a simulation toolkit that had already been written by Tony Field [4]
to aid in writing WS3 because I had used it before and knew it to be flexible
and that it fitted what I needed. It only allows one Thread (SimProcess) to
execute at once, so it is thread-safe and access to member data does not have to
be synchronised. This reduces performance concerns because synchronisation
requires locking. It also means that software is easier to write because one does
not have to be concerned with what requires synchronisation and what does
not.

The class library was already well written, but I made some changes to it to
increase it’s suitability for what I needed:

• I added support for the Pareto distribution to the toolkit so that it could
be used in WS3, because it was drawn to my attention that it would be
useful to include [22, 46, 47, 41]. Here I briefly outline how this was done:

A density function for the Pareto distribution is4:

f(x) =
a

(1 + x)a+1
for x ≥ 0 (5.1)

To generate random variates via the inverse-transform method, this func-
tion must be integrated to produce the distribution function [47]:

From equation 5.1,

F (x) =

{
1− 1

(1+x)a for x ≥ 0
0 otherwise

(5.2)

We can now invert the function by setting u = F (x) and solving for x
[46, 47]:

4a is the symbol used in [47], other symbols seem to be used in different sources [48, 49,
50]. Other sources also have slightly different, though equivalent, definitions of the Pareto
distribution function, which involve constant factors.

Web Server Performance Simulation c© Andrew Ferrier 2002

CHAPTER 5. IMPLEMENTATION ISSUES 39

x = F−1(u) = (1− u)−1/a − 1 (5.3)

Hence I was able to use this result to write code to generate Pareto variates,
which can be seen in the method SimTools.Samplers.Pareto.next().
This code simply generated a random value u ∼ U(0, 1).

• I moved all of the packages in the simulation toolkit to my class hierarchy,
according to my coding standards (as explained in section 5.7 on page 42).
I did this so that my changed classes would not clash with those which
Tony Field had written, if they ever happened to be installed on the same
system together.

• I re-formatted the source code to fit my layout standards.

• I made a few modifications to the simulation library to increase perfor-
mance, and it’s coherency with the rest of my project. These changes
were not significant enough to detail here, but they were documented in
comments within the source code.

• Initially the simulation toolkit used double precision numbers. I was con-
sidering at one point using single precision floating point numbers for
times and other time-related factors throughout WS3, to improve it’s per-
formance, but I decided in the end to stay with the use of double precision
numbers because the accuracy of the model required it and performance
was not greatly affected. On average double precision numbers give about
15 digits of precision whereas single precision numbers only give about 7
digits of precision [51, 52]. I deemed that this might not be enough — for
example, a simulation that ran for thousands of seconds might still need
to discriminate with milliseconds of precision.

5.4 Randomness

It was drawn to my attention that, since I was using Java’s standard Ran-
dom number generator — that is, the random number generator in the class
java.util.Random — I should research the methods used by this generator
to produce it’s random numbers to see if they were ‘random’ enough. Specif-
ically, it was important to ensure that the period of the random numbers was
long enough. Any pseudo-random number generator has a ‘period’ after which
random numbers repeat themselves — this is a by-product of the process and
occurs because the same random seed will always produce the same random
numbers, given the same method [53].

I discovered that the contract of java.util.Random was not very tight. It
specified that the class should generate random numbers according to a linear
congruential formula, a typical method, and refers to the source [53]. A linear
congruential method uses the generative formula:

xn+1 ≡ λxn + µ (mod 2β) (5.4)

(where xn is the ‘previous’ random value, xn+1 is the current value, and λ
and µ are constants. β is the word size on the machine in question)

c© Andrew Ferrier 2002 Web Server Performance Simulation

40 CHAPTER 5. IMPLEMENTATION ISSUES

However, as [53] makes clear, the period of the random number generator
depends upon what values one uses the constants in the formula (λ and µ), and
these were not specified in the contract for java.util.Random. Theoretically,
then, I could not rely upon any particular implementation correctly providing
a sufficiently long random period or providing sufficiently ‘random’ numbers
(what this constitutes is beyond the scope of this report — see [54] for more
information). As [55] states, many ANSI C implementations provide a “totally
botched” implementation of linear congruential random number generators.

Initially, thus, I thought it would be sensible to write my own random number
generator to ensure that I knew the values of λ and µ, and thus that they
were valid. Indeed, I did write a ‘wrapper’ class around java.util.Random, in
preparation for this.

However, I did some more research [56, 53, 54, 25], and it quickly became
apparent that this was also quite a näıve view. The problem is that floating point
arithmetic works subtly differently on different machines. Although in theory
the Java virtual machine abstracts away a lot of that detail, in practice some
machine-dependent eccentricities still exhibit themselves, and thus the selection
of λ and µ should be dependent on the machine on which the simulation is
running [56].

Thus I decided that the best idea was to leave the implementation of the
random number generator up to the Java API after all — thus any machine
dependent behaviour could be dealt with by the implementor of the Java runtime
on that architecture. However, I left my random number wrapper class in place
in case it became useful in future. In fact, I did use it to ensure that the random
seed used by WS3 is always 1 — this ensures that results are exactly repeatable.

Nevertheless, I decided it would increase confidence in WS3 if I wrote a utility
to test the random numbers on a particular Java implementation. Thus I wrote
the doc.ajf98.websim.RandomTest utility, which is supplied with WS3 (for
more information on how to use RandomTest, see sub-section A.6.3 on page 77).
It works on the assumption that a poor linear congruential random number
generator will fairly quickly work back to it’s initial value (since all random
number generators have a finite period). Thus it generates a stream of random
numbers, and if one occurs which matches the first random number it generated,
it aborts, reporting the total number of random numbers generated. If this
number is low (i.e. not of the order 264, which is approximately the number
of different double values Java can represent [57]), the user knows that the
implementation of the random number generator on their system is poor. This
program can be run for as long as necessary to convince the user that WS3 will
have a good quality period of random numbers to work with.

For the record, I have run the random number generator test successfully on
the following software up to the values specified:

• The Blackdown Java 1.3.1 SDK on Debian GNU/Linux [58] — up to
∼ 24× 109 unique random numbers. Took approximately 6 hours.

• IBM Java JDK 1.3.0 on SuSE Linux [59] — generated ∼ 744×109 unique
random numbers. Took approximately 36 hours.

• Sun Java JDK 1.3.1 on Windows 2000 — generated ∼ 1.1 × 109 unique
random numbers. Ran for approximately 1 hour.

Web Server Performance Simulation c© Andrew Ferrier 2002

CHAPTER 5. IMPLEMENTATION ISSUES 41

5.5 Equilibrium

Another issue which was drawn to my attention whilst I was writing WS3 was
that of equilibrium. In most simulations, it is important to understand the role
of equilibrium.

Equilibrium essentially means that as a simulation progresses — as the vir-
tual time tends towards infinity — the statistical distributions which represent
the state of the system become constant. This does not mean that the state
of the system is constant, merely that it becomes ‘stable’ and ‘hovers’ around
particular values. In the case of WS3, for example, this might mean that the
length of the network node and server queues become stable, and that the server
utilisations also become stable. This means they do not grow or shrink over a
long period of time.

It sometimes important to understand whether a system is in equilibrium.
For example, if one had a simple web system with one client and one server, and
the client was capable of generating requests at a far greater rate than the server
was capable of processing them, the server queue length would grow without
limit over time (assuming an infinite queue length). Thus the mean queue length
over the entire length of the system would be an almost meaningless statistic.
This is because the system would never have been at equilibrium.

In order that the user of WS3 could decide whether the system was at equi-
librium, I implemented a data dumping feature. This output certain data about
the objects in the system during the execution of the simulation, at user-specified
discrete intervals of virtual time. This data is output in CSV format, which al-
lows the user to important into a large variety of spreadsheets and analysis
tools. The data can then be plotted, and the moment at which the system
reaches equilibrium can be seen. The simulation can be re-run using the re-
setStatsPoint attribute (which is applied to the <system> element). This will
run the simulation, and reset the statistics at the specified number of virtual
seconds, which ensures measurements are only done from the equilibrium point
onwards.

However, it is important to appreciate that it is possible for a system not
to reach a meaningful equilibrium. For example, it is quite likely that a bank’s
online web banking system will never reach a state of equilibrium, because the
demand on the system will clearly vary over the day as different number of
people (clients) want to access it. On an even higher level, the system might
not reach an equilibrium over a week or even a year because the demand will
be continually varying according to the day of the week, holidays, and so on.
Also, the system might reach a transient equilibrium for a while, then, due to a
change in the demand, shift to another mode entirely.

This latter point is not directly relevant to WS3 because WS3 as implemented
does not have the facility to vary the demand over time: clients’ demand always
follows the same statistical distribution. However, it is important to understand
that if WS3 were extended in this way, that the question of whether the simu-
lation were at equilibrium might become less important. This kind of extension
is discussed further in sub-section 8.4.1 on page 68.

c© Andrew Ferrier 2002 Web Server Performance Simulation

42 CHAPTER 5. IMPLEMENTATION ISSUES

5.6 Documentation

When writing WS3, I produced two kinds of documentation:

• A user guide. This can be found in appendix A.

• Javadoc comments [60] and standard Java comments. I placed Javadoc
comments in my code to document the interfaces of various classes within
WS3. I also placed normal Java comments in certain places to docu-
ment certain non-obvious implementation features. However, I have al-
ways guarded against placing too many comments in source code, as I feel
that making the source code self-explanatory is more important, so by no
means all of the source code is completely documented.

5.7 Standards

During my development, I adhered to the following standards:

• In general, I complied with Sun’s document ‘Code Conventions for the
Java Programming Language’ [61] as far as possible.

• I created all my classes in packages with the prefix doc.ajf98. I considered
that this was sufficiently unique to ensure that any classes I had written
would not clash with any that others had written. There is an ad-hoc
convention to use the reverse of a domain name for packaging classes,
which would have led to me using the prefix uk.ac.ic.doc.ajf98 or
similar. However, I deemed that this was too long and cumbersome.

The simulation classes that I used from Tony Field were migrated into
my package hierarchy — i.e. that beginning with doc.ajf98. This was
so that they would not clash with any future classes he might decide to
write or modify.

Web Server Performance Simulation c© Andrew Ferrier 2002

Chapter 6

Testing

This chapter explains the testing that I did to WS3, which is based upon the testing
specification in my outsourcing report for this project [1]. Most of the testing was
done via a test and evaluation suite which can be run automatically across WS3. I
split this test suite into two halves — TST and CNC.

This chapter describes the TST part of the test and evaluation suite. The TST
input files were designed to test the correctness of all of the features of WS3. It
describes each of the test inputs that I developed, what they were designed to test,
and explains any problems with WS3 that they drew to my attention. Section 6.8 on
page 49) describes tests that did that did not involve the input file suite.

The test cases in this chapter are not separated into categories, as some tests
are designed to test more than one aspect of WS3. However, as a group, they
are designed to test all of the features of WS3. Not all of the tests carried out are
documented in this chapter in order to ensure conciseness; however, a representative
sample is included1.

The CNC part of the suite was used to evaluate some hypothetical web serving
models with WS3, and is discussed in chapter 7.

6.1 TST-001

This is the most basic test in the testing suite: it simulates a client and a server,
directly connected. It is designed to test a basic simulation with WS3, which
can be verified with queueing theory. It also tests WS3’s tracing capability —
tracing is turned on to the maximum level. The setup is shown in figure 6.1 on
the next page2.

The expected results are:

Server utilisation ≈ 1
Average client response time ≈ 1

1For more details on running the test suite, see section A.6 on page 76.
2A quick guide to the network diagrams within this chapter can be found in appendix B on

page 89.

43

44 CHAPTER 6. TESTING

client

server

Figure 6.1: TST-001

We can show this using queueing theory. The test is a fairly simple M/M/1
queueing model3. A single client and a single server were used, and the client
inter-generation time was determined by an exponential distribution, as was the
service time on the server, both with a rate of one event per virtual second.

Hence:

λ = µ = 1 (6.1)

(λ is the mean arrival rate and that µ is the mean service rate — for more
information on queueing theory, see [12]).

Hence:

Server Utilisation = 1− P (0) = 1− (1− %) = % =
λ

µ
(6.2)

(P (0) is the probability that there are no requests in the system, % is the
traffic intensity, which is measured in Erlangs).

Hence, I can conclude that the server utilisation should be 1.
This test has always produced the expected results since I wrote it. Also,

the trace file produced is similar to that shown in figure 6.2 on the next page,
which is correct and complete.

Other tests similar to TST-001 which used queueing theory to validate WS3

were also carried out, but are not detailed here for conciseness.

3M/M/1 is written in Kendall notation, a notation used to describe queueing models —
see the glossary for more information and other sources

Web Server Performance Simulation c© Andrew Ferrier 2002

45

1 Connection from client[0] : Created to object server[?].
2 Potential destination for client[0] : Created as server...
3 Client client[0] : Created.
4 Routing map for client[0] : Being formed.
5 Routing map for client[0] : Adding element with target:...
6 Connection from server[0] : Created to object client[?]...
7 Server server[0] : Created.
8 Routing map for server[0] : Being formed.
9 Routing map for server[0] : Adding element with target:...

10 Server Thread server0 : Created.
11 Simulation system TST-001 : created with maximum runti...
12 @0.0 Server server[0] : Looking at queue.
13 @0.0 Server server[0] : Going to sleep.
14 @1.0 Client client[0] : Created {Request for /testFile_3...
15 @1.0 Object client[0] : Attempting to find route for mes...
16 @1.0 Client client[0] : Route found. Sending {Request fo...
17 @1.0 Server server[0] : Asked to process message {Reques...
18 @1.0 Server server[0] : Looking at queue.
19 @1.0 Server server[0] : Handing over message {Request fo...
20 @1.0 SThread server0 : Has been asked to process {R...
21 @1.0 Server server[0] : Going to sleep.
22 @1.0 SThread server0 : Entering execution loop.
23 @1.0 SThread server0 : Waiting to get control of a ...
24 @1.0 SThread server0 : Has control of a processor. ...
25

26 ...
27

28 @1.8 SThread server0 : Has control of a processor. ...
29 @2.0 Client client[0] : Created {Request for /testFile_2...
30 @2.0 Object client[0] : Attempting to find route for mes...
31 @2.0 Client client[0] : Route found. Sending {Request fo...
32 @2.0 Server server[0] : Asked to process message {Reques...

Figure 6.2: Example trace output from TST-001 (edited to fit)

46 CHAPTER 6. TESTING

client

server

networknode

Figure 6.3: TST-002

6.2 TST-002

This test is designed to simulate a fairly basic system, with one client and one
server, but unlike TST-001, it also has an intermediate network node. The
layout can be seen in figure 6.3.

This test helped me discover the following bug:

• I wrote the test incorrectly at first, and missed out a connection that
the system needed. WS3 was missing a check for whether there was a re-
turn connection in the findRoute method of the RouteableSystemObject
class. I corrected WS3, and corrected the test.

Apart from that bug, this test has always correctly executed under WS3.

6.3 TST-003

This test is designed to stress-test the WS3 XML loading mechanism. I created
this test because I found a bug in WS3 whereby some object names, which
I had intended for it to accept, it did not accept. Thus I created this test
which contains lots of boundary conditions and unusual values and identifiers,
to ensure that WS3 does not crash in these circumstances. There is no diagram
for this test because it has long and complex object names.

Since I created this test, it has never failed to execute correctly — WS3 has
always loaded it, and executed it to completion.

Web Server Performance Simulation c© Andrew Ferrier 2002

CHAPTER 6. TESTING 47

<system>
</system

Figure 6.4: TST-005

6.4 TST-004

This test is designed to test the multiple-threading, multiple-processor features
of WS3, by specifying a simple client-server system (similar to that shown in
figure 6.1 on page 44 for TST-001). The test specifies four concurrent threads,
three processors available, and a custom thread grain of 0.4 virtual seconds.

Since I created this test, WS3 has always loaded it and executed it to com-
pletion correctly, with valid results.

6.5 TST-005

This test is an exact replica of the test from figure 5.1 in the outsourcing report
[1], which is designed to be invalid XML. The objective of the test is to ensure
that WS3 does not crash under such circumstances, but aborts with an error
instead. The test is shown in figure 6.4.

The output from WS3 if this test is executed is shown in figure 6.5. The
parser indicates a number of errors relating to the format of the input file, but
WS3 does not crash.

This test has been used to refine the error output from WS3, but has never
caused WS3 to crash.

1 WSSS (WS^3) x.x.x.x
2 Copyright (C) Andrew Ferrier (andrew@new-destiny.co.uk) 2002.
3 http://www.new-destiny.co.uk/andrew/project/
4

5 Initializing system.
6 DocumentBuilderFactory is ignoring comments: true
7 DocumentBuilderFactory is ignoring element content whitespace: true
8 DocumentBuilder is namespace aware: true
9 DocumentBuilder is validating: true

10 DOMImplementation supports ’Core’: true
11 DOMImplementation supports ’XML’: true
12 DOMImplementation supports ’Traversal’: true
13 ERROR: Problem parsing input file on line 5, column 9:
14 Element type "system" must be declared.
15 ERROR: Problem parsing input file on line 8, column 1:
16 The element type "system" must be terminated by the
17 matching end-tag "</system>".
18 ERROR: General file parsing error: Stopping after
19 fatal error: The element type "system" must be terminated
20 by the matching end-tag "</system>"..

Figure 6.5: Output from WS3 on execution of TST-005 (edited to fit)

c© Andrew Ferrier 2002 Web Server Performance Simulation

48 CHAPTER 6. TESTING

<fruit>
<banana>
</banana>

</fruit>

Figure 6.6: TST-006

6.6 TST-006

This test is an exact replica of the test from figure 5.2 in the outsourcing report
[1], which is designed to be valid XML, but invalid for WS3 according to the
WS3 schema. XML. The objective of the test is the same as for TST-005: to
ensure that WS3 does not crash under such circumstances, but aborts with an
error instead. The test is shown in figure 6.6.

The output from WS3 if this test is executed is shown in figure 6.5. This
is correct: the parser indicates that the input elements are incorrect and WS3

aborts, but does not crash.
This test has been used to refine the error output from WS3, but has never

caused WS3 to crash.

1 WSSS (WS^3) 0.3.14.7
2 Copyright (C) Andrew Ferrier (andrew@new-destiny.co.uk) 2002.
3 http://www.new-destiny.co.uk/andrew/project/
4

5 Initializing system.
6 DocumentBuilderFactory is ignoring comments: true
7 DocumentBuilderFactory is ignoring element content whitespace: true
8 DocumentBuilder is namespace aware: true
9 DocumentBuilder is validating: true

10 DOMImplementation supports ’Core’: true
11 DOMImplementation supports ’XML’: true
12 DOMImplementation supports ’Traversal’: true
13 ERROR: Problem parsing input file on line 5, column 8:
14 Element type "fruit" must be declared.
15 ERROR: Problem parsing input file on line 6, column 13:
16 Element type "banana" must be declared.

Figure 6.7: Output from WS3 on execution of TST-006 (edited to fit)

6.7 TST-007 and TST-008

These two tests together fully test all the distributions available in WS3 and also
test many other features: they are quite complex. A diagram, which represents
either TST-007 and TST-008, is shown in figure 6.8 on the facing page. I also
used them to white-box test WS3: the tracing is turned on to the maximum
level in both. What the final results of the simulations were was not of interest
to me, since I knew it would be unsolvable for me via queueing theory and thus

Web Server Performance Simulation c© Andrew Ferrier 2002

CHAPTER 6. TESTING 49

C1 C2

S1 S2

N1

Figure 6.8: TST-007 or TST-008

I could not check them. However, I examined carefully the trace output and
checked some of the results by hand, to ensure that the simulation was executing
correctly.

WS3 has never failed to execute these tests correctly.

6.8 Non-File-Suite Testing

I also did testing with WS3 whilst I was implementing it, where the test files
were not part of the TST testing suite — this testing was part of the normal
implementation routine. Some of the more important of these tests are explained
here:

• More tests were done to ensure the correctness of WS3’s simulation: some
of these involved verification with queueing theory, some more informally
via ‘rules of thumb’. I haven’t detailed these in this chapter for conciseness.

• A requirement for WS3 was that all of the CSV output of WS3 (i.e. the
data dumping output), should be syntactically valid4. I could not perform
an explicit test on this, but I used the data dumping output a lot whilst
I was writing WS3 and using the TST and CNC testing and evaluation
suite and I never once encountered a problem importing CSV output into
an application.

• Another one of the requirements which I had set for WS3 in the speci-
fication in my outsourcing report was that WS3 should never crash. To

4This was specified in the testing specification in my outsourcing report [1].

c© Andrew Ferrier 2002 Web Server Performance Simulation

50 CHAPTER 6. TESTING

a certain extent, some of the TST tests tested this, but also, whenever
I caused WS3 to crash during development, I documented it and made
sure that the problem was tracked down and fixed. Thus I am reasonably
confident that WS3 is stable and will not crash easily — though it is likely
that there is a fatal bug somewhere, as with most complex software!

• I decided not to test WS3 with a tool such as Fuzz [62] as I had suggested
in my outsourcing report because any bugs so found would most likely be
in the XML parser I was using (Apache Xerces) rather than in WS3 itself,
since the parser was responsible for parsing of the input file.

The next chapter (chapter 7) evaluates WS3 by, amongst other things, look-
ing at the CNC input file suite, which complements the TST input file suite.

Web Server Performance Simulation c© Andrew Ferrier 2002

Part III

Uses for the Software

51

Chapter 7

Evaluation

This chapter evaluates WS3 quantitatively and qualitatively by: using the CNC
input file suite1 to evaluate some hypothetical web serving models; examining the
speed of WS3’s simulation; and discussing the accuracy of WS3’s simulation.

7.1 Notes About the Input Files

Only summary information is included about the CNC input files in this chapter.
For more detail, see the sections in the user guide on the files provided and the
test suite (section A.5 on page 76 and section A.6 on page 76). All input files
in this chapter were equilibrium-adjusted where appropriate (as explained in
section 5.5).

7.2 Web Serving Guidelines

7.2.1 Size of Machines Used

One of the first things I wanted to do when evaluating WS3 was address one of
the example ‘general’ questions which I posed in the introduction (chapter 1):

Whether it is best, generally, to use many small interconnected serv-
ing machines (a web server ‘farm’), or to use one or only a few large
serving machines.

It seemed to me, that taking the question above, there were two extremes —
where there was only a single high-powered serving machine, and where there
was a very large number of serving machines, nominally with the same total
processing capacity. I decided to model the first in the evaluation input file
CNC-001.xml and the second in CNC-002.xml.

1See the introduction to chapter 6 for more information on the TST and CNC input file
suite

53

54 CHAPTER 7. EVALUATION

S1

C1[0] C1[1] C1[2]

N1

Figure 7.1: CNC-001

C1 Creation Distribution Exponential rate=0.2
C1 Number of Instances 50
S1 Service Distribution Exponential rate=100

Table 7.1: Initial parameters for CNC-001

CNC-001

CNC-001 simulates a network with 100 clients (C1[0] .. C1[99]), which are
linked to a network node (N1), which is in turn linked to a single server (S1).
This is really the simplest sensible network for analysing this problem.

The layout for CNC-001 is shown in figure 7.1. The dashed arrow indicates
that there are more than 3 clients, but that they are not all shown on the
diagram.

Next, I created CNC-002 which was the ‘opposite’ of CNC-001 to test
whether, for a given set of parameters, the server utilisation and the client
response time increased or decreased. However, before I created CNC-002, I
calibrated CNC-001 so that the server utilisation was at a certain nominal value
— I picked 50%. To do this, I first picked some values that I thought would be
sensible, which are shown in table 7.1.

I then adjusted the client creation distribution until the server utilisation was
about 50% (in fact, it was 0.499). The final parameters are shown in table 7.2 on
the next page.

Web Server Performance Simulation c© Andrew Ferrier 2002

CHAPTER 7. EVALUATION 55

C1 Creation Distribution Exponential rate = 1
C1 Number of Instances 50
S1 Service Distribution Exponential rate = 100

Table 7.2: Final parameters for CNC-001

S1[0]

N2

N1

C1[0] C1[1] C1[2]

S1[1] S2[2]

Figure 7.2: CNC-002

CNC-002

Once CNC-001 was constructed, I constructed CNC-002, basing it around CNC-
001. However, I increased the number of servers to a large number (20). I then
reduced the exponential service rate for each of the servers to 100

20 = 2.5, ensuring
that overall, the servers had nominally the same power. The layout for CNC-
002 is shown in figure 7.2. The dashed line at the bottom indicates that there
are more than 3 servers, but that this is not shown on the diagram.

When I executed CNC-002, the results were almost exactly the same as for
CNC-001. The server utilisation for each of the servers was approximately 50%.
I decided I could conclude from this one of two things:

• Using several ‘small’ servers versus one ‘large’ server was approximately
of the same efficiency, and thus the decision on which to use should be a
cost-based decision, or:

• My model was not sufficiently complex to fully model the subtleties of the
problem.

It would be näıve to think that there was not a certain amount of truth
in the second explanation; after all, the simulation model which WS3 uses is

c© Andrew Ferrier 2002 Web Server Performance Simulation

56 CHAPTER 7. EVALUATION

never going to model all the complexities of a web server system. However,
there is also likely to be a certain amount of truth in the first explanation
too. Certainly it fits with intuition. And if there is truth in it, it leads to
an interesting conclusion: that because one server is (fairly obviously) easier
to administer than multiple servers, then it is better to use one large server
(ignoring the problems of server failure). Certainly this conclusion would merit
further investigation; unfortunately this would require a more in-depth model
than I had time to include in WS3. Thus I decided that it was not worth
me investigating this question further given the complexity of WS3, and the
simulation model which it allowed.

7.2.2 Server Threading

WS3 has the feature to simulate multiple threads on a processor. I used this
feature to try to answer the second of the two ‘general’ questions that I posed
in the introduction (chapter 1):

How many synchronous threads should exist on a single server sys-
tem for maximum performance.

I first approached this by creating a variety of input files. CNC-003 was the
first I created, and was identical to CNC-001. I then created a number of copies
of this file, and altered the number of threads and processors on the server.
Since the exponential service rate for CNC-003 was 100, my approach was to
divide this by the number of processors available. This would mean that all
the processors aggregated would have nominally the same power as the single
processor machine (CNC-003). The parameters and the server utilisations are
shown in table 7.3 on the next page.

I created a larger variety of samples than that shown in table 7.3, and I
tried analysing them in a variety of ways, plotting different graphs, and trying
to come up with a pattern. Below is presented the conclusion.

As can be seen from table 7.3, the server utilisations for most of the in-
puts were ∼ 1, which was to be expected considering that the servers were all
nominally of the same power.

The most striking patterns were to be found when looking at the client
response times to the server requests. A graph of the client response times is
shown in figure 7.3 on page 58 (for processors = 40 only). As can be seen, the
client response time is at a minimum when:

Processors

Threads
≈ 0.75

However, the graph has two peaks, and the pattern which the response time
follows is not at all obvious. This is most curious, and it seems quite likely
that the pattern which the response times are following is quite complex. There
are obviously certain ratios of processors to threads which work well for the
clients and certain ratios which do not. The complex pattern seen in figure 7.3
is reminiscent of the patterns created when one sums several sinusoidal waves of
different periods with each other. There is a high likelihood that there are lots
of interacting factors which are causing the complex patterns which one sees
in figure 7.3, and that sometimes these factors contribute to each other, and

Web Server Performance Simulation c© Andrew Ferrier 2002

CHAPTER 7. EVALUATION 57

Name S1 S1 S1 S1 C1
Threads Processors Exponential Measured Average

Service Utilisation Response
Rate Time

CNC-003 1 1 100 0.50 ∼ 10
CNC-008 20 10 10 0.99 ∼ 12.3
CNC-014 20 15 6.67 0.99 ∼ 4.5
CNC-004 20 20 5 1 ∼ 3.5
CNC-015 40 10 10 0.997 ∼ 5.7
CNC-021 40 15 6.67 0.99 ∼ 12.37
CNC-025 40 17 5.82 0.99 ∼ 8.8
CNC-009 40 20 5 0.99 ∼ 8.1
CNC-026 40 22 4.54 1 ∼ 20.8
CNC-022 40 25 4 0.999 ∼ 7.1
CNC-027 40 28 3.57 1 ∼ 7.9
CNC-023 40 30 3.33 1 ∼ 4.75
CNC-028 40 32 3.12 1 ∼ 6.8
CNC-024 40 35 2.86 1 ∼ 8.3
CNC-007 40 40 2.5 1 ∼ 5.4

Table 7.3: Measurements for differing numbers of threads and processors

sometimes they cancel out the effects of each other, depending on the processor
to thread ratio. It is unlikely in practice that one would be able to discover
these factors analytically, particularly since real systems are likely to be more
complex than CNC-003, and thus the conclusion is that one should use software
like WS3 to model the situation one intends to use to discover the best number
of threads to use.

7.2.3 Distributional Differences

As well as using WS3 to answer some of the questions I had posed in the
introduction, I also decided to investigate some other interesting features of
WS3 and simulations.

One of the first things I wanted to do was analyse the difference between
different statistical distributions.

I did this by creating a simple system, which I called CNC-050, whereby
client requests were created at a constant rate of 1 per virtual second, and
servers had constant service times of 1 request per virtual second, and then
created a few variations on this where the server distribution was of different
types (though with the same mean inter-service time). After executing CNC-
050, the server utilisation was 1, as expected, and the mean client response time
was 1 virtual second.

The layout of the basic system is shown in diagram 7.4 on the next page.

Below I outline what I discovered for each variation:

c© Andrew Ferrier 2002 Web Server Performance Simulation

58

0

5

10

15

20

25

0 0.2 0.4 0.6 0.8 1 1.2

Pr oces s or s / Thr eads

M
ea

n
 C

lie
n

t
R

es
p

o
n

se
 T

im
e

(V
ir

tu
al

 s
)

Figure 7.3: Client response times for different number of threads, processors =
40

C1

S1

Figure 7.4: CNC-050 et al.

CHAPTER 7. EVALUATION 59

CNC-051 — Exponential Distribution

This was a variation on CNC-050 where an exponential distribution was used
in place of the constant distribution on the server. The rate specified for the
exponential distribution was 1, and I expected this to provide approximately
the same results as for CNC-050, since the mean of the exponential distribution
is the same as it’s parameter (the rate). And, indeed, one of the results was as
expected — the server utilisation was ∼ 1. However, the mean client response
time was ∼ 60, and I did not expect this — this was a factor of 60 greater than
before!

I took a closer look at the summary statistics from the simulation, and
explained the difference this way: the client also had a very high variance in the
response time. Before, in CNC-050, the variance in the response time had been
0, as would be expected, because constant distributions were used throughout.
Now the variance was ∼ 530. Here, a distribution was being used on the server
which varied greatly the time taken to service a request. Since the variance
in the client response time was considerably greater than the mean, I could
conclude that the high value of the mean was misleading.

CNC-052 — Uniform Distribution

CNC-052 was a variation on CNC-050 which used a uniform distribution which
was distributed between a lower bound of 0.5 and an upper bound of 1.5. The
mean of this distribution is 0.5+1.5

2 = 1, which is the same as that for CNC-
050. Thus I was expecting similar results as for CNC-050, and indeed they
were very similar. Thus I concluded that the uniform distribution was similar
in simulation behaviour to the constant one that I used in CNC-050 because
the results were similar. This is borne out by common sense: the uniform
distribution is very simple, and over time will tend to produce results similar to
a constant distribution if the means of both are equal.

Pareto Distribution

The Pareto distribution is discussed in sub-section 7.2.4.

7.2.4 Real-world Example

Unfortunately I did not have a lot of time during my project to try to apply
WS3 to many specific real-world examples.

However, one example I tried was modelling the DoC webserver. I wrote a
program which analysed the DoC web server logs for the period of one week and
determined the average and variance of the interarrival times of requests. This
was done with the help of some log parsing software that converted web server
logs into an easier-to-use form [63].

Using this method, I discovered that the average inter-arrival time for re-
quests on the webserver was 0.75s, and that the variance of the inter-arrival
time for these requests was ∼ 2× 106.

Thus I created the simulation specification CNC-030, represented in fig-
ure 7.5 on the next page. I gave it two sets of clients, C1 and C2. C1 repre-
sented the clients local to DoC, and C2 represented, other, more remote, clients.
C1 clients only had to go through network node N1 to get to the server, S1,

c© Andrew Ferrier 2002 Web Server Performance Simulation

60 CHAPTER 7. EVALUATION

C1 C2

N2

N1

S1

Figure 7.5: CNC-030

but C2 clients had to go through both network nodes (N1 and N2). Network
node N2 was given a higher fixed service delay than N2. Server S1 was given a
very high service rate with 8 threads, which is a common default for the Apache
webserver that DoC uses. The creation distributions on C1 and C2 were set to
emulate the inter-arrival rates above, using (initially) a normal distribution.

Thus this all matched the DoC web serving configuration as closely as I
could given the limited amount of information at my disposal.

The results were as follows:
The average C1 (local) client response time was ∼ 0.1 seconds. The average

C2 (remote) client response time was lengthier, at about ∼ 0.2 seconds. The
network node utilisations were negligible (near to zero). The server utilisation
was about 0.06. All of this matched up roughly with what one would expect:
clients within DoC retrieve web pages near-instantly. Clients further away get
a good response time, but it depends upon their network connection (I did
not model different remote clients in CNC-030). The server utilisation is very
low, which likely matches that in DoC (although my model did not address
dynamically created pages, because WS3 does not have that feature — see sub-
section 8.4.1 on page 68 for more information — which would probably lift the
server utilisation dramatically).

I tried to alter this example to utilise a Pareto distribution for the client inter-
request generation rate, since this would be likely to more realistically model
the client requests [41]. However, the simulation failed to approach equilibrium
(equilibrium is explained in section 5.5 on page 41), and I left it executing for
several days. Thus I could not conclude anything about how the Pareto distribu-
tion would have affected this simulation, except that it is very difficult to cause
simulations to converge to equilibrium when they use the Pareto distribution,

Web Server Performance Simulation c© Andrew Ferrier 2002

CHAPTER 7. EVALUATION 61

C1

S1

N1

Figure 7.6: CNC-060

which was something I had already learnt [64].

7.3 WS3’s Speed

Another thing I decided it would be interesting to analyse was the speed of WS3

when the input simulation specification altered. Optimising WS3 for speed was
not one of the primary objectives of the project, but I thought it would be
interesting to try to come to some conclusions about what kinds of simulations
tended to affect the speed.

One of the things I had noticed whilst developing and using WS3 was that
the larger the number of system objects that were present in the simulation, the
longer the simulation tended to run. I decided to test this theorem.

I created a system (which I called CNC-060), which was a simple system
with a single client, a single network node, and a single server. The layout of
the system is shown in diagram 7.6. All of the system objects were initially given
an exponential distribution with a rate of 1. I then created some variations on
this where there were a greater number of clients, with all the clients attached
to the network node. I increased the exponential rates at the network node
and the server accordingly so that they could ‘handle’ the load that was being
placed upon them.

I then ran all of these input tests on an unloaded real machine for 10, 000
virtual seconds. The results are shown in table 7.4 on the next page and are
plotted on the graph shown in figure 7.7 on the following page.

As can be seen from the graph, there appears to be an approximately lin-
ear relationship between the number of system objects and the total runtime

c© Andrew Ferrier 2002 Web Server Performance Simulation

62

Name Number of Clients Real Runtime
CNC-060 1 27s
CNC-061 2 39s
CNC-062 3 50s
CNC-063 4 64s
CNC-064 5 74s
CNC-065 6 86s
CNC-066 7 98s
CNC-067 8 110s

Table 7.4: WS3’s Speed for varying numbers of clients

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8

Number of Cl ients

E
xe

cu
ti

o
n

 T
im

e
(v

ir
tu

al
 s

)

Figure 7.7: Runtime for varying numbers of clients

CHAPTER 7. EVALUATION 63

provided the other parameters are kept the same. This can be explained in the
following way: when there is a greater number of system objects, WS3 has to
context-switch between a greater number of threads (which is proportional to
the number of system objects) in order to ‘cover’ the same period in virtual
time. Thus it is quite logical that there is a linear relationship.

I did not investigate the speed difference imposed on WS3 by the use of
different statistical distributions, because I decided that this would not be ‘fair’
— some distributions take longer to generate a variate than others, particularly
those that use the rejection method [25], and this would have an impact on the
simulation speed, whilst providing no difference in functionality. Nevertheless,
it might be an interesting future project to investigate this, whilst attempting
to remain ‘fair’.

7.4 WS3’s Accuracy

Another one of the things that I felt is was necessary to discuss in the context
of WS3 was it’s accuracy. I have already discussed equilibrium issues and how
they affect WS3 in section 5.5 on page 41.

However, it is important to understand that simulation results can vary,
dependent upon the random values used and the length for which the simulation
is run. Investigating this problem further was unfortunately not something that
I time to spend doing with WS3, but it would be important if one were using
WS3 in a real-world case — there are standard methods for doing output analysis
[11], which could be used. It must be remembered, however, that these tend
mainly to rely on empirical rules-of-thumb [41].

c© Andrew Ferrier 2002 Web Server Performance Simulation

Chapter 8

Conclusions

This chapter summarises my project, how I executed it, what I’ve achieved, and
what WS3 has been useful for. It also discusses future possibilities for WS3 and
web server simulation and analysis.

As stated in the introduction to this report, my project had two primary
aims:

• To construct the web serving simulation software — WS3.

• To use this software to come to some general guidelines for web serving
systems.

Both of these aims were furthered with this project as I explain below.

8.1 Construction of WS3

I produced a piece of software, WS3, which exceeded the requirements I had
initially laid out in the outsourcing report for this project [1]. The final version
of WS3 has the following features:

• It supports simulation of clients, network nodes, and servers via an input
specification of a system, coded in XML.

• Connections can be specified between system objects.

• Routing tables can be specified for system objects, so that messages can
be sent along user-defined routes.

• Clients can create requests according to a large variety of statistical dis-
tributions.

• Service times for network nodes and clients also vary according to one of
the same distributions.

• It is possible to specify which servers a particular client sends requests to.

• Network nodes can be set to randomly ‘drop’ messages.

65

66 CHAPTER 8. CONCLUSIONS

• Servers can have an arbitrary number of synchronous software threads,
and an arbitrary number of processors. The context switching between
threads on a processor is simulated.

• All system objects (clients, network nodes, and servers) can be easily
replicated up to arbitrary numbers. Connections and routes are also au-
tomatically replicated where appropriate.

• Server and network node queue lengths can be fixed at a particular value
or made infinitely long.

• Summary and detailed data dump information is output.

• Tracing of actions in the simulation can also be output.

WS3 was tested for validity (as explained in chapter 6).
The construction of WS3 has been very useful. WS3 would need more devel-

opment if it were to be used as a professional server sizing tool — in particular,
it would need customisation such that it matched the particular serving soft-
ware and hardware in use more accurately, because at the moment it abstracts
away too much detail from such things. However, it is interesting to use at the
moment, simply to understand how such systems work. In particular, reading
the trace output from WS3 gives a very good idea of the way serving systems
behave. And because all of the source code for WS3 is publicly available, as
well as this report, which gives a good overview of the way WS3 works, it could
easily be customised to many particular situations.

8.2 General Conclusions about Web Systems and
WS3

Using WS3, I came to the following general conclusions (which are described in
more detail in chapter 7):

• The ratio between the number of threads and the number of processors on
a server has an important and complex impact on the mean response times
seen by clients, which is very difficult to analyse without using simulation
software such as WS3.

• At a high level, lots of low-powered servers or one high-powered server
seem to be approximately equivalent; hence, due to the clear maintenance
advantage of having a low number of servers, that is the preferential option.
However, this would require more investigation for detailed test cases.

• The use of different statistical distributions with simulations such as WS3

can produce unexpected results; one must be careful to use a distribution
which is appropriate to the system one is modelling.

• The speed of simulation software such as WS3 tends to roughly propor-
tional to the number of process objects being simulated, but is also affected
by the statistical distributions in use.

• It can be difficult for simulations which use the Pareto distribution to
converge; but it is useful for modelling real-world client demands.

Web Server Performance Simulation c© Andrew Ferrier 2002

CHAPTER 8. CONCLUSIONS 67

8.3 Strengths and Weaknesses of WS3 and the
Project

This project was, as has been acknowledged by many people, quite ambitious.
Given this, I feel it has been quite successful. Some of the strengths and weak-
nesses of the project were:

8.3.1 Strengths

• WS3 is a functioning piece of software, which, to my knowledge, is rela-
tively free of bugs, and has a good feature set. With a bit more develop-
ment I believe it could be used for practical server sizing problems.

• WS3 is written in an easy-to-maintain style and in a language which I
believe is well suited to it; Java. It also uses XML as the input format
and again I believe that this has worked well. If I wrote WS3 again I
would use Java and XML again.

• I have come up with some interesting guidelines for server sizing which
are interesting in themselves and also merit further investigation.

• Although WS3 has some web-specific features, it could also be fairly eas-
ily used to model many types of client-server systems, with appropriate
modifications to the simulation code. Examples include EJB (Enterprise
Java Beans)-based application servers [65], email systems, and so on.

8.3.2 Weaknesses

Below I explain some of the weaknesses of WS3 and the project; these can be
taken as comments on how I would have liked to improve the project, if I did it
again.

• Because WS3 was a simulator, using it to discover general guidelines and
relationships is difficult; In retrospect, I should probably have given more
emphasis to analysis in the project. Nevertheless, I believe that WS3 is a
useful tool and that I have come up with some useful conclusions. Ideas
for further analysis are examined in sub-section 8.4.2 on page 69.

• WS3 does not directly support an ‘empirical’ distribution where data from
real-life can be used as a distribution in the simulation model: one has to
take empirical data and fit it to one of the standard distributions supplied
with WS3. If I had more time to spend on WS3, it is one of the first things
I would add, because it makes input modelling (matching the input to real
styles of input) considerably easier.

The reason it was not done is because it is requires an interface to WS3

to input the data, as well as a method of sampling the data from the
distribution: these would require specifying in the input file. Thus it
would, in order to have the level of flexibility that would be useful and
which I wanted, be quite complex.

c© Andrew Ferrier 2002 Web Server Performance Simulation

68 CHAPTER 8. CONCLUSIONS

• I would have liked to have spent more time validating the general accu-
racy of WS3’s simulations, although I am reasonably confident from the
testing, both formal and informal, that I did, that the simulation models
the system as intended.

• There are also other features I would liked to have added to WS3; see
section 8.4. The lack of these is partly a weakness but they are also an
opportunity for future development.

8.4 Future Extensions

Unfortunately there simply was not enough time available for me to do all the
things I would have liked to do with my project — there are features I would
have liked to add to WS3, and more analyses I would have liked to carry out.
I feel that it is important to document these, so some of the more of these
extensions are listed below. I very much enjoyed my project, and I intend to
continue developing WS3, so some of these may well be carried out in the future.

8.4.1 WS3 Features

Modelling Features

• WS3 does not support time-based demand variation. Most web servers
do not have the same load on them all the time. It’s fairly obvious that,
for example, in the middle of night, most web servers have a considerably
lower load on them than they do during the middle of the day. It would
be good if WS3 supported clients which alter their demands over time.
However, this would definitely be a non-trivial feature to add in.

• As mentioned above in sub-section 8.3.2 on the page before, WS3 does not
support an ‘empirical’ distribution. This is a high priority to add to WS3

in the future.

• It might be useful in some situations if WS3 supported termination based
on some other criterion than just the ‘current’ virtual time — for example,
the total number of client request/replies. However, I decided that most
practical simulation could be done with WS3 the way it stood, and that
the simulation could always be re-run with a different running time as
appropriate. Thus I didn’t implement this.

• WS3 does not support any concept of ‘big’ and ‘small’ requests — i.e. all
requests which arrive at a server have the same service time distribution.
This would be an interesting feature to add, where different requests were
serviced in a different ways, possibly also with the idea of pages being
dynamically formed, maybe with data from a back-end database.

• WS3 has no support for the concept of client ‘timeouts’. As it stands at
the moment, clients will wait for a request to be returned indefinitely. This
is unrealistic as most client software in common use will timeout after a
certain period of time: a minute for example. However, this only becomes
relevant if the system is failing, and what’s more, WS3 will still currently

Web Server Performance Simulation c© Andrew Ferrier 2002

CHAPTER 8. CONCLUSIONS 69

indicate, for example, if the average reply time for a client request is 10
minutes, which is clearly too long, and would indicate a problem.

• There is currently no way for the number of threads on a server to change
dynamically (say, for example, according to the load on the server). This
would be an interesting feature to build in, because some real-life web
servers behave in this way.

Implementation Changes

• I would have like to use the java.util.TimerTask for the thread that
notifies that there is still progress in the simulation. This would probably
make WS3 more efficient, because this thread would automatically wake
up at the appropriate time, and would not need to be checked at any other
time.

• Currently, the SimulationSystem class does not support multiple in-
stances of itself being created without bugs exhibiting themselves. I would
like to improve this so that, for example, multiple simulation systems could
be specified in a single input file and created concurrently.

Other Features

• I would like to spend more time using optimising and native code compil-
ers, as well as directly optimising the code, to make WS3 itself faster. One
example of this was an idea I had to speed up the Queue object by using
a pointer to the current head of the queue and a rotating buffer, rather
than creating and destroying objects, which is expensive in most Java im-
plementations. Another example would be using the gcj Java native-code
compiler on Linux. But this was quite an extensive area of investigation
and it does not actually affect the simulation results themselves, merely
the execution time of WS3.

8.4.2 Analysis of Web Serving

• I would like spend more time on analysing real-world examples with WS3.
Unfortunately, in the time available, it was difficult to get hold of real-
world data and map it accurately onto a simulation with WS3. Neverthe-
less, if I were to do the project again, this is something I would like to
focus upon to a greater extent. In particular, I would liked to have studied
the impact of non-finite queue lengths. WS3 has the ability to simulate
these, but I did not have time to do any analysis with them.

• I would like to spend more time doing queueing theory-based analysis to
check and evaluate WS3. As it stands, the queueing theory which I used
was reasonably basic — it would be interesting to use queueing theory with
some more complex models to validate WS3’s validity in that context.

c© Andrew Ferrier 2002 Web Server Performance Simulation

Part IV

Appendices

71

Appendix A

User Guide

This user guide is also available as a standalone document, primarily for external
users. The program source code (and compiled binaries), as well as all reports for
the project can be found at [1].

This user guide assumes a fairly technical reader, who does not require a lot of
guidance in installing software etc.

A.1 Licencing

WS3 is subject to the licence conditions in the file LICENCE, supplied with all
pre-packaged versions of WS3. Apache Xerces, [43], also supplied with all pre-
packaged versions of WS3, is subject to it’s own licence conditions, found in the
file LICENCE.xerces.

This product includes software developed by the
Apache Software Foundation (http://www.apache.org/).

A.2 An Overview of WS3

WS3 emulates a web serving system. It does this by reading in an XML input
file that you specify, parsing it, and constructing a simulation of that system
in memory that represents the system you have specified in the input file. It
then executes that simulation system for a period of time that you have speci-
fied, using various parameters that you have specified. When the simulation is
finished, WS3 will output various data on the state of the simulation. Data can
also optionally be output during the execution of the simulation.

There are three main objects which can exist in a WS3 simulation system
— clients, servers, and network nodes. There must be at least one client and
one server, but network nodes are optional. Objects communicate by sending
messages to each other along connections — these messages are either requests
(sent by clients to servers) or replies (sent back from servers to clients in response
to requests). Network nodes, if used, are used purely as intermediaries. Routes
are used to specify ways of getting from one system object to another if they
are not directly connected with a single connection.

73

74 APPENDIX A. USER GUIDE

Network nodes and servers have incoming message queues. Incoming mes-
sages are added to the queues and remain there until all the items ahead of
them have been processed. For network nodes, processing merely involves send-
ing on the message via an appropriate route. For servers, processing involves
parsing the message (which should be a request), formulating a reply message
and sending the reply message back via an appropriate route.

Clients do not have incoming message queues. Replies are processed imme-
diately. Reply processing does not involve anything except recording the fact
that the reply has been received.

A.3 System Requirements

• An operating system which can support the Java 2 Environment, such as
Windows 2000 or Linux. Other operating systems also support the Java
2 Environment and WS3 should operate correctly with those too, but it
has not been tested with them. Installation instructions in this user guide
are only given for Windows and Linux.

• A Java Run-Time Environment which is compatible with the Java Soft-
ware Development Kit, version 1.3.1, as provided by Sun [13], such as the
Java Run-Time Environment 1.3.1. This environment must be correctly
installed as per the instructions that come with it, such that the PATH
and CLASSPATH environment variables are set correctly.

Note: If you want to build WS3 from source code, you should have the full
Java Development Kit installed rather than just a run-time environment.

• A Java XML Parser with the following features:

– Support for XML 1.0 [14].

– Support for DOM (Document Object Model) Level 2.

– Support for JAXP.

An example of a parser with those features is the Xerces Java Parser,
version 1.4.4 [43]. This has been tested with WS3 far more extensively than
any other Parser. Some other parsers may cause problems when used with
WS3. In particular, the Apache Crimson Parser has been briefly tested
and I had some problems with it, as it does not support XML Schema
validation.

The Xerces Java Parser, version 1.4.4 is supplied with all pre-packaged
versions of WS3. It is subject to it’s own licencing conditions, found in
the file LICENCE.xerces. It is recommended that you use this version of
Xerces as it has been tested with WS3.

• If you wish to build WS3 from the source code using the supplied makefile,
you must have GNU (GNU’s Not Unix) make [66] installed, as well as a
standard suite of Unix utilities, especially xargs. On Linux or other Unix
systems, this is often already installed. On Windows the easiest way to
obtain this functionality is to install a Unix emulation layer such as Cygwin
[67].

Web Server Performance Simulation c© Andrew Ferrier 2002

APPENDIX A. USER GUIDE 75

A.4 Installing WS3

WS3 will come distributed in one of the three following types of files:

• A .zip file.

• A .tar.bz2 file.

• A .tar.gz file.

A .zip file should be used if you are planning to install on Windows. If you
plan to install on Unix/Linux, use the .tar.bz2 or .tar.gz file. Which you
use will depend on what decompression programs are installed on your system
— gz decompression is more widely available, but the bz2 file will be smaller
to download.

A.4.1 Installing on Unix/Linux

Note: The following commands should be entered from a shell prompt.
Uncompress the archive into a temporary directory, then change to that

directory. For these instructions, we are going to assume that the directory is
/ws3. For example, if using the .tar.bz2 file1:

mkdir ~/ws3
tar xvjf ws3.tar.bz2 --directory=~/ws3
cd ~/ws3

Or if using the .tar.gz file:

mkdir ~/ws3
tar xvzf ws3.tar.gz --directory=~/ws3
cd ~/ws3

The archive is distributed with a pre-made binary .jar file that you can use
to run WS3 (after installing it). However, if you want to re-build WS3, execute
the following commands:

make clean
make all

In order to install WS3, use the following command:

make install

A.4.2 Installing on Windows

Unzip the .zip file (archive) into a directory somewhere on your computer, for
example c:\ws3.

1The j option is not available on tar on some systems. Type man tar or man bzip2 to find
out how to decompress the file

c© Andrew Ferrier 2002 Web Server Performance Simulation

76 APPENDIX A. USER GUIDE

A.4.3 Warning About Installation on any Platform

Note: It is important to ensure that however you install WS3, the xerces.jar
file is in the same directory as ws3.jar, or that xerces.jar is in your Java
Runtime Environment’s official extension directory. No other location will be
likely to work, even if that location is in your CLASSPATH — this is because WS3

is invoked with the java -jar option, which ignores the CLASSPATH. For more
information, see [68]. The standard Makefile supplied with WS3 will install
both of these files in the same place, so this problem should not occur unless
you try to install manually.

A.5 File Structure Once Installed

Once WS3 is installed, the following directory and file structure will exist in the
directory you have installed into2:

doc/ - The Java source files and compiled classes
tests/ - The input test files
ws3.jar - The WS3 Jar file which can be used to invoke WS3
xerces.jar - The supplied Apache Xerces Parser
ws3.xsd - The WS3 XML schema
README - Miscellaneous information
LICENCE.* - Licence information
Makefile - The makefile which can be used to rebuild WS3

A.6 Testing the Install of WS3

A.6.1 Testing on Unix/Linux

Bring up a shell prompt and change to the directory where you extracted WS3

(e.g. ~/ws3). Execute the following command:

make test

A.6.2 Testing on Windows

Bring up a command prompt in Windows. From the directory where you ex-
tracted WS3 (which, if you followed the instructions above, will be c:\ws3),
and execute the following command:

make test_noinstall

WS3 will build and install itself if necessary, then run through a variety of
test simulation specifications designed to ensure that it is installed correctly.
These test simulation specifications are the TST and CNC files referred to in
the Testing and Evaluation chapters of the final report of this project [1]. Bear
in mind that some of the tests are designed to fail!

2Only important files and directories are shown.

Web Server Performance Simulation c© Andrew Ferrier 2002

APPENDIX A. USER GUIDE 77

A.6.3 Randomisation Test

WS3 utilises the random number generator supplied with your Java Runtime
Environment as a source of randomness. You can run a test to ensure that
this random number generator does not ‘repeat’ itself too quickly. From the
directory where you installed WS3, type:

make randomtest

A utility will load and begin generating random numbers. It will take many
years to complete execution, unless your random number generation implemen-
tation is faulty, in which case it may abort fairly quickly with a warning. You
will want to abort it after a while, when you are confident than it has run for
longer than you will ever want to use WS3 for. Press Ctrl-C to do this.

See the final report for this project [1] for more information on these ran-
domness issues.

A.7 Rebuilding the Javadoc Documentation

The WS3 archive file is supplied with Javadoc documentation pre-built in the
docs/ directory. If you wish to rebuild this documentation, enter the following
command from the directory where you unpacked the archive:

make doc

A.8 Creating an Input File

An input file for WS3 is an XML file, which conforms to a certain XML Schema.
This schema is supplied with WS3 (the file supplied is called ws3.xsd), and
specifies what elements can occur in the XML file, in what order, with what
content, etc. — in other words, it constrains the content of the XML to a
subset of valid XML. If you are not familiar with XML or XML schemas, it
is recommended you use an XML editor which supports schemas to create any
and all XML files which are input to the program, such as XML Spy [69].
WS3 checks the XML file is valid for the schema3, but the error messages thus
produced directly reference the content of the schema and thus may be counter-
intuitive to users not familiar with how schemas work. The XML file should
conform to the basic layout shown in figure A.1 on the following page. This will
ensure that the program correctly uses the right schema file, and is well-formed
XML.

A.8.1 Points to be Noted about Input Files

The following points should be noted about input files to WS3:

• Identifiers are used to specify names and refer to system objects in the
input file. Identifiers can contain only the alphanumeric characters (upper
and lower case), and the underscore () and dash (-) characters, and must

3In most cases, assuming one is using a schema-validating XML parser library, such as
Xerces 1.4.4.

c© Andrew Ferrier 2002 Web Server Performance Simulation

78 APPENDIX A. USER GUIDE

1 <?xml version="1.0"?>
2

3 <system xmlns="http://www.new-destiny.co.uk/andrew/project/"
4 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
5 dataDumpPeriod="dataDumpPeriodInVirtualSeconds">
6 <name>inputSystemName</name>
7 <runtime>runtimeInVirtualSeconds</runtime>
8

9 <!-- a number of system object elements -->
10

11 </system>

Figure A.1: An outline layout for how an input XML file to WS3 should look
.

be between 1 and 127 characters long. All identifiers are case-sensitive.
Being case-sensitive means, for example, that clientA, ClientA, CLIENTA,
and Clienta are all names of different system objects. However, one
should try to avoid using different system objects which are differentiated
only by case in that way, as it will most likely serve only to confuse,
although WS3 will understand the difference.

• All time units are generally assumed in this guide to be ‘virtual seconds’, or
in terms of ‘virtual seconds’. It actually makes no difference to WS3 what
one assumes the time units to be, but I generally refer to them as virtual
seconds as that is a convenient time unit which seems appropriate in most
cases. However, some aspects of the system will have ‘sensible’ default
values if they are not specified in the input file, and these default values
are based around the assumption that the virtual time units are seconds.
Also, whatever time unit one uses, one must be consistent throughout an
input file or WS3 will not produce the desired results.

• Since a WS3 input file is merely an XML file, XML-style comments can
be used anywhere that they are normally valid in an XML file. Comments
start with the string <!-- and end with --> and they can span multiple
lines. An example has already been used in figure A.1.

A.8.2 Input File Elements

A well-formed WS3 XML input file consists of a single <system> element, with
various attributes and subelements.

The <system> element must contain xmlns and xmlns:xsi attributes ex-
actly as they are in figure A.1. There are also various non-compulsory attributes
of the <system> element:

• defaultTTL — The time-to-live value that is initially assigned to each
message in the system. This is an integer greater than zero. The default
value, if the attribute is not specified, is 32. See section A.8.6 on page 85
for more information on time-to-live values.

Web Server Performance Simulation c© Andrew Ferrier 2002

APPENDIX A. USER GUIDE 79

• dataDumpPeriod — Specifies how often in virtual seconds WS3 dumps out
data. It should be an integer greater than zero. The default value, if the
attribute is not specified, is 1. Data dumping is described in more detail
in sub-section A.9.1 on page 86.

• traceLevel — Specifies the level of tracing which WS3 will use when
running this simulation. This should be a integer which ranges between
0 (no tracing) and 4 (full tracing). A number higher than 4 will produce
nothing extra beyond full tracing. A number lower than 0 will cause an
error. See subsection A.9.2 on page 86 for more information on tracing.

• resetStatsPoint — If present, specifies the virtual time point at which
the summary statistics will be reset. This helps the user with obtaining
accurate statistics about the execution, whilst compensating for equilib-
rium. For more information on this, see the section on ‘Equilibrium’ in
the project final report [1]. Must be a number of virtual seconds greater
than zero. If it is absent, or equal to, or less than, zero, the statistics will
not be reset.

There are various sub-elements of the <system> element. Some are compul-
sory and some are optional. They are as follows, and whether they appear or
not, must appear in this order:

• <name> — Specifies the name of input system. This name is not cur-
rently used for anything by WS3 except as a title etc. when outputting
information. It must appear once and only once.

• <runtime> — Specifies the total system runtime in virtual seconds. It has
no default and must appear once and only once.

• <client>, <networknode>, <server> — These elements specify clients,
network nodes, and servers in the simulation system. These three elements
have various attributes and sub-elements. They are similar for each of
three elements so they will be described together in sub-section A.8.3.
There must be at least one <client> element and one <server> element
in the system — <networknode> elements are entirely optional.

A.8.3 System Objects

This sub-section describes attributes and subelements for the <client>, <networknode>,
and <server> elements, collectively known as the system object elements.

There are various non-compulsory attributes for these system object ele-
ments. They are:

• instances — Specifies how many instances of a system object are created.
This should be an integer greater than zero. The default value if the
attribute is not specified is 1. If more than 1 instance is created, then WS3

automatically creates multiple system objects with the same name and will
represent those objects by appending [n] to the end of the name, where
n is the instance number of the system object (numbering starts from 0).
When connections are created to an object, they should still be created
just to the base name of that object, even if there are multiple instances
of that object. Messages will be sent to a random object instance.

c© Andrew Ferrier 2002 Web Server Performance Simulation

80 APPENDIX A. USER GUIDE

• threads — Valid only for the <server> system object. Specifies the
number of concurrent threads operating on the modelled server. Must
be an integer greater than zero. The default value if the attribute is not
specifies is 1. If one sets this attribute, one normally wants to set the
processors attribute as well.

• processors — Specifies the number of processors available on this server.
The number of threads executing concurrently can never exceed this num-
ber. Must be an integer greater than zero. The default value if the at-
tribute is not specifies is 1.

• threadGrain — Specifies the time grain which threads execute for. The
length of time for which one thread can execute without giving up control
to another thread can never exceed this value. Must be a decimal number
of virtual seconds greater than zero. By default this attribute is set to 0.1
virtual seconds.

There are also various subelements for the system object elements. Some of
them are compulsory and some are not. They are as follows, and must appear
in this order if they appear:

• <name> — Specifies the name of the system object. This must comply
with the identifier guidelines discussed in section A.8.1 on page 77. This
element must occur once and only once.

• <connectto>, <routeto> — These elements specify connections from, and
routes for, the system object. At least one connection must be specified
and zero or more routes can be specified. Connections and routes are
explained in more detail in section A.8.4 on the facing page.

• <creationDistribution> — Valid only for the <client> element. Spec-
ifies the distribution used for creating the inter-generation times for client
requests. The distribution is specified using a single distribution sub-
element which is one of the elements described in section A.8.5 on page 83.

• <serviceTimeDistribution> — Valid only for the <networknode> and
<server> elements. Specifies the distribution used for creating the service
times for network node queues and server queues. The distribution is spec-
ified using a single distribution sub-element which is one of the elements
described in section A.8.5 on page 83.

• <destPossibility> — Valid only for the <client> element. Specifies a
server which it is valid for the client to create requests for. In other words,
when a request is created by a client, WS3 picks a random destination
possibility from all those specified by that client (with equal probability).
If only one destination possibility is specified for a client, the client al-
ways generates messages that are destined for that destination possibility.
At least one <destPossibility> subelement must be specified for each
<client> element.

Note: The decision on which server to send a message to is made inde-
pendently and before any decisions on how to route the message based
on <connectto> and <routeto> elements (which are explained in more
detail in section A.8.4 on the next page).

Web Server Performance Simulation c© Andrew Ferrier 2002

APPENDIX A. USER GUIDE 81

• <queueLength> — Valid only for the <networknode> and <server> ele-
ments. Specify the length of the incoming message queue (not including
the message currently being processed). Can be either a integer value
greater than zero or the special value infinite, which ensures that queue
is of infinite length. Obviously this is a modelling aspect which would not
exist in the real world, but it is useful if one is unsure what the maximum
queue length should be or one wishes to model a system in such a way
that one can relate it to queueing theory easily. This element must appear
once and only once.

• <drop> — Valid only for the <networknode> element. The value of the
element must be a number between 0 and 1. Represents the probability
that the network node should ‘drop’ any given message which it is asked
to process.

A.8.4 Connections and Routes

Each system object must have at least one outgoing ‘connection’ (although one
can have as many as desired) and has zero or more outgoing ‘routes’. A connec-
tion models a physical connection between two system objects — for example,
if one were modelling a simple system with two PC (Personal Computer)s con-
nected directly to the same hub on a simple LAN, one acting as a web server
(call it S1), and the other as a web client (call it C1), then one would probably
model the link between these two with one ‘connection’ in WS3 (though other
models are possible which would be equally valid). Connections are always one-
way, so in this case one would have two ‘connection’ objects — one attached
to the client, going to the server, and one attached to the server, going to the
client.

A route allows one to build more complex systems. If one had only two
system objects, a route would be useless, but if there are more than two system
objects, routes allow one to specify ways of getting from one system object to
another, via another third party system object (or possibly more than one third
party), even when there is no physical ‘connection’ between the two.

For example, say one extended the previous example so that there were two
client hosts (call them C1 and C2) on the LAN, with the hub now modelled
separately as a network node object (N1), and still with one server (S1). This
example is shown in figure A.2 on the following page.

Ignoring the return journey from the server to the client to keep things
simple, the way one would typically model the physical ‘connections’ for this in
WS3 is:

• There is a physical ‘connection’ from C1 to N1.

• Similarly, there is a physical ‘connection’ from C2 to N1.

• There is also a physical ‘connection’ from N1 to S1.

However, this is inadequate for WS3 as it stands: if C1 generated a request
to be sent to S1, WS3 would not know the route it should take: all it knows
are the targets of the immediate neighbours that it has physical ‘connections’
to. Hence we need to create some ‘routes’:

c© Andrew Ferrier 2002 Web Server Performance Simulation

82 APPENDIX A. USER GUIDE

C1 C2

N1

S1

Figure A.2: A simple example of a web client-server network

• Create a route at C1 where the destination is S1 and the route to take is
via N1.

• Similarly, create a route at C2 where the destination is S1 and the route
to take is via N1.

This would solve the problem: when C1 created a request to be sent to S1,
for example, WS3 would have a route whose ultimate target is S1, even though
C1 does not have a physical connection to S1. Thus WS3 would first sent the
request to N1 where it would be queued on N1’s incoming queue. When N1 got
round to dealing with the request, it would know how to send it to S1 because
it has a physical connection to get it there. If there was no physical connection,
N1 could sent the packet on again if it had a route which had the target S1
(although in our simple example it did not).

If this is confusing, think of connections and routes in the following way:

• A connection is attached to a source system object and has one parameter:

– The name of the target system object.

• A route is attached to a source system object and has two parameters:

– The destination, which is the ultimate target for messages.

– The route, which is the name of an object the source object has a
connection to — the next ‘hop’ which will bring the message ‘closer’
to the target.

Web Server Performance Simulation c© Andrew Ferrier 2002

APPENDIX A. USER GUIDE 83

Connections and routes are created between system objects by placing <connectto>
and <routeto> elements inside the appropriate system objects in the input file.
It is easiest to show this with an example (we will use the same setup as before,
with a four-system-object network). The partial specification is shown in A.3 on
the next page.

A.8.5 Distribution Types

WS3 supports a variety of statistical distributions which can be used for spec-
ifying client request generation, network node service time, and server service
time. Each <creationDistribution> and <serviceTimeDistribution> ele-
ment must contain a specification for one, and one only, distribution. One of
the following distribution elements can be chosen:

• <constant> — This is a very simple distribution, that returns the same
value every time it is used. For example, if one wants to model a client
which generates a new request every 10 seconds, one would specify the
<creationDistribution> of the client as in figure A.4 on page 85.

• <exponential> — Defines an exponential distribution, which follows the
following formula:

X = −ρ× ln r (A.1)

where X is the variate, ρ is the parameter, and r is the randomly generated
value.

The single parameter is the average rate for the distribution. For example,
if the XML in figure A.5 on page 85 were used in a <client> element,
then the client would create 10 requests every virtual second.

• <uniform> — This element defines a uniform distribution, which returns
values that are distributed uniformly over the interval specified. For exam-
ple, if one wants a client to generate requests uniformly between very 3 sec-
onds and every 5 seconds, one would specify the <creationDistribution>
of the client as in figure A.6 on page 86.

• <geometric>, <erlang>, <positiveNormal>, <weibull>, <pareto> —
These distributions are all used in a very similar way to the distributions
above. For the sake of conciseness, I have not detailed how each works,
but they are all standard statistical distributions and there is plenty of
information available for each one [25, 11, 20]. The Geometric and Pareto
distributions only have one parameter each, which is included directly in
the distribution element (similar to that in figure A.4 on page 85). The
other three extra distributions use the parameters shown in table A.1 on
page 85.

WS3 does not actually support an ‘instantaneous’ distribution, where mes-
sages are routed instantly. However, one can be emulated, for most practical
purposes, by creating a <constant> distribution and setting the routing time
to be a value considerably smaller than any other time period used in the sim-
ulation specification. Bear in mind that although this works, it can slow down
the simulation considerably.

c© Andrew Ferrier 2002 Web Server Performance Simulation

84

1 <client>
2 <name>C1</name>
3 <connectto>N1</connectto>
4 <routeto>
5 <destination>S1</destination>
6 <route>N1</route>
7 </routeto>
8

9 <!-- other specification elements -->
10

11 </client>
12 <client>
13 <name>C2</name>
14 <connectto>N1</connectto>
15 <routeto>
16 <destination>S1</destination>
17 <route>N1</route>
18 </routeto>
19

20 <!-- other specification elements -->
21

22 </client>
23 <networknode>
24 <name>N1</name>
25 <connectto>S1</connectto>
26

27 <!-- other specification elements: the network node needs
28 no routes as it has a direct connection to S2 and
29 we are not concerned about the return journey in
30 this example -->
31

32 </networknode>
33 <server>
34 <name>S1</name>
35

36 <!-- other specification elements: we have specified no
37 connection for the server as we are not
38 concerned about the return journey in this
39 example: but this would not be adequate for
40 a real WS3 input file as every system
41 object must have at least one outgoing
42 connection -->
43

44 </server>

Figure A.3: An example of how to use the <connectto> and <routeto> elements

APPENDIX A. USER GUIDE 85

<creationDistribution>
<constant>10</constant>

</creationDistribution>

Figure A.4: An example use of the <constant> distribution.

<creationDistribution>
<exponential>10</exponential>

</creationDistribution>

Figure A.5: An example use of the <exponential> distribution.

A.8.6 Time-to-live Expiry

All messages have a TTL (Time-to-Live) value. For each message, it starts off
at 32, unless you specify a different value for the defaultTTL attribute (which is
attached to the <system> element). Each time a message is routed by a network
node, the TTL value is decremented. If it reaches zero, then the message is
discarded (though WS3 produces a warning and the drop is recorded).

A.8.7 Constraint Enforcement

The XML Schema that is supplied with WS3 enforces a number of constraints
on the input files which WS3 will accept. Most of these are common sense and
they are fully specified in the XML Schema file itself, so they will not be fully
detailed here. However, a quick summary of some of the more important ones
follows:

• Item names must be consistent across the input file. For example, one
cannot specify a <connectto> element which connects to a system object
that does not exist.

• Item names must conform to the identifier guidelines found in subsec-
tion A.8.1 on page 77.

A.9 Running WS3

To run WS3, simply issue the following command4:
4The ../ preceding the schema filename is necessary due to a bug in Java. You will always

need to adjust this so that is points to the schema in the directory above the directory the
schema is actually in.

Distribution Name Parameter 1 Parameter 2
Erlang <k> <theta>
Positive Normal <mu> <sigma>
Weibull <alpha> <beta>

Table A.1: Parameters for statistical distributions in WS3

c© Andrew Ferrier 2002 Web Server Performance Simulation

86 APPENDIX A. USER GUIDE

<creationDistribution>
<uniform>

<lbound>3</lbound>
<ubound>5</ubound>

</uniform>
</creationDistribution>

Figure A.6: An example use of the <uniform> distribution.

java -jar ws3.jar inputfile.xml ../ws3.xsd

It is possible that this command may not execute correctly if another version
of the Xerces parsing classes are installed on the system you are using, as is the
case in DoC for example. In this case, you will have to execute WS3 via the
compiled class file rather than via the jar file 5. Execute the following command
from the directory where you installed WS3 6:

java -classpath .:xerces.jar doc.ajf98.websim.WebSim
inputfile.xml ../ws3.xsd

In the above commands, replace wsthree.jar with the location on your
system of the WS3 .jar file. Replace inputfile.xml with the location of
the desired XML input file specifying the system you wish to simulate, and
inputschema.xsd with the location of where the supplied XML schema file is
(typically the same directory as the .jar file) — but with ../ prefixing it.

The Java virtual machine will initialize, and load and run WS3. WS3 will
execute, outputting extra information according to the options you specified
in the XML input file, and then terminate. It may output a number of files,
as explained in greater detail in section A.10 on the facing page. If you want
to abort the simulation whilst it is still executing, the key combination Ctrl-C
should achieve this on most systems.

A.9.1 Data Dumping

WS3 has the facility to dump data on the system status at certain user-specified
intervals. These intervals are specified by the dataDumpPeriod attribute of the
<system> element. This attribute specified how often data is dumped, in virtual
seconds. The default is every 1 virtual seconds.

The data is dumped to a file which has a similar name and the same location
as the input XML file, but has the string ‘ dump.csv’ appended to the end. The
name of this file is printed on the screen during the execution of WS3.

A.9.2 Tracing

WS3 has the facility to output a trace file during the execution of the simulation.
This trace file describes actions that are occurring in the simulated system. It

5This problem is due to a limitation in the way jar files work — most Java virtual machines
ignore the CLASSPATH environment variable when executing a jar file.

6You may have to adjust the syntax of the command slightly for your system.

Web Server Performance Simulation c© Andrew Ferrier 2002

APPENDIX A. USER GUIDE 87

can help you to understand how the simulation works if you are unsure, and
can also be useful if you are not getting the results you expect.

The trace file is created if the traceLevel attribute of the <system> element
is greater than 0 (see sub-section A.8.2 on page 78). The level of detail in
the trace file is specified by that attribute. Experiment with the value of the
attribute to get the level of detail you want.

The trace file is automatically created with a similar name and the same
location as the input XML file, but has the string ‘ trace.txt’ appended to
the end. The name of this file is printed on the screen during the execution of
WS3.

A.10 Interpreting the Output of WS3

WS3 prints summary output on the screen once it is finished. This summary
output should be self-explanatory to anyone familiar with simulation. It also
prints tracing output as explained in sub-section A.9.2 on the facing page, which
should be equally self-explanatory. Data is dumped to a CSV file (as explained
in section A.9.1 on the preceding page, and this data can be imported into
spreadsheets or data analysis tools. Each row represents a discrete point in
virtual time, with the left-hand-most column indicating what virtual time that
was. Each column represents a measurable parameter of a system object at that
point in time. The first row of the CSV contains headings for these columns
which should also be self-explanatory.

For more information on how the output of WS3 works, see the full final
report for this project [1].

c© Andrew Ferrier 2002 Web Server Performance Simulation

Appendix B

Network Diagram
Conventions

Figure B.1 gives a quick overview of the style of network diagrams used in this
report. The diagram shows a client (C1) connected to a network node (N1). In
fact, there are two connections between C1 and N1, as shown by the fact that
the arrows is double headed. N1 is connected to a server called S1 which also
has two connections — one from N1 to S1, and one running the other way.

C1 N1 S1

Figure B.1: Example Network Diagram

89

Appendix C

UML Diagrams

Figure C.1 on the next page gives a very quick overview, in one diagram, of the
UML notation used in this report. Each box represents a class. Class A has
four attributes — p, which is of type P, is public (it has a + sign), and has the
value 3, q, which is of type Q, is private (it has a − sign), and has the value 4,
r, which is of type R, is protected (implementation visibility only — it has a #
sign), and has the value 5, and finally s, which is of type S, is public, is static
(has class scope — it is underlined), and has the value 6. Class A also has two
methods — a, which takes one parameter u of type U, and returns an instance
of type A, and method b which takes no parameters and returns an instance of
class B. Class A is abstract (the name of the class is italic).

Class B implements or extends A. Class B can have references to some in-
stances of class C, and this is an aggregates relationship — the objects of class
C are deemed to be part of the object of class B, although this relationship is
not typically explicit in the programming language (it is not in Java).

Class B also has references to zero or more objects of class E, although this
relationship is deemed to be less tightly coupled — again, this is not explicit in
the language.

Class D directly inherits from class B.
Classes D and E are in package F.
For more information about UML, see [70, 71].

C.1 Conventions

UML diagrams in this report are drawn using the dia software [72]. The dia-
grams are not necessarily complete but only show portions of class hierarchies,
and may be missing information to improve clarity.

The following conventions are used in the UML diagrams:

• In my UML diagrams, I do not distinguish between abstract class and
interfaces. They both occur with the name of the class/interface in italics.

• Public class members (those prefixed with a +) are deemed to be visible
to the whole program. Private class members (those prefixed with a −)
are private to that class. Protected class members (those prefixed with a

91

92 APPENDIX C. UML DIAGRAMS

F

A
+p: P = 3
-q: Q = 4
#r: R = 5
+s: S = 6
+a(u:U): A
+b(): B

B

C

D E

0..*

Figure C.1: Example UML Diagram

#) are visible only to that class and it’s subclasses. Friendly (or package-
private) class members (those without a specific prefix) are visible to that
class and the package it is in (if it is in a sub-package, that sub-package
only). For more information, see [73].

Web Server Performance Simulation c© Andrew Ferrier 2002

Appendix D

Bibliography

[1] Ferrier, Andrew. MEng Individual Project — Web Server Performance
Simulation (2002). The website for this project and the associated software
(WS3). Contains downloadable reports, program binaries and source code,
and other related items.
URL http://www.new-destiny.co.uk/andrew/project/

[2] Harrison, Peter. Peter Harrison’s Homepage, Department of Computing
(2002).
URL http://www.doc.ic.ac.uk/~pgh/

[3] Harder, Uli. Uli Harder’s Homepage, Department of Computing (2002).
URL http://www.doc.ic.ac.uk/~uh/

[4] Field, Tony. Tony Field’s Homepage, Department of Computing (2002).
URL http://www.doc.ic.ac.uk/~ajf/

[5] Sadri, Fariba. Fariba Sadri’s Homepage, Department of Computing (2002).
URL http://www.doc.ic.ac.uk/~fs/

[6] Richardson, Tim. UK census site stays shut (2002). An article describing
how the UK census site failed when it was first opened because of inade-
quate server sizing.
URL http://www.theregister.co.uk/content/6/23948.html

[7] Koller, Mike. Ellis Isle: Uptime Comeuppance (2001). A description of
how the Ellis Island web site failed due to poor server sizing.
URL http://www.internetweek.com/newslead01/lead042601.htm

[8] Definition of ‘server farm’.
URL http://www.pcwebopaedia.com/TERM/S/server_farm.html

[9] WWW Consortium.
URL http://www.w3.org/

[10] Internet RFC/STD/FYI/BCP Archives.
URL http://www.faqs.org/rfcs/

93

http://www.new-destiny.co.uk/andrew/project/
http://www.doc.ic.ac.uk/~pgh/
http://www.doc.ic.ac.uk/~uh/
http://www.doc.ic.ac.uk/~ajf/
http://www.doc.ic.ac.uk/~fs/
http://www.theregister.co.uk/content/6/23948.html
http://www.internetweek.com/newslead01/lead042601.htm
http://www.pcwebopaedia.com/TERM/S/server_farm.html
http://www.w3.org/
http://www.faqs.org/rfcs/

94 APPENDIX D. BIBLIOGRAPHY

[11] Field, Tony. Simulation and Modelling (2000). Lecture notes from Simu-
lation and Modelling course, lectured by Tony Field, 1999/2000 academic
year.
URL http://www.doc.ic.ac.uk/~ajf/Teaching/Simulation.html

[12] Ferrier, Andrew, Morgan, Henry and Kay, Robert. An Introduction to
Queueing Theory (1999). A useful tutorial and reference to queueing
theory which I did with two Department of Computing colleagues in the
first year.
URL http://www.new-destiny.co.uk/andrew/past_work/queueing_
theory/index.html

[13] Sun’s Java Page.
URL http://java.sun.com/

[14] W3C. XML (eXtensible Markup Language).
URL http://www.w3.org/XML/

[15] W3C. Who’s Who at the World Wide Web Consortium.
URL http://www.w3.org/People/all#timbl

[16] Menasce, Daniel E. and Almeida, Vergilio A.F. Capacity Planning for Web
Services, pp. 23–63. Prentice Hall, Upper Saddle River, NJ 07458, 2002.
ISBN 0130659037. A ‘conventional’ book on web capacity planning based
on analysis and theory. Makes limited reference to web simulation.

[17] Nielsen, Jakob. Response Time Overview (1994). Excerpt from the book
Usability Engineering by the same author.
URL http://www.useit.com/papers/responsetime.html

[18] Greenspun, Philip. Philip and Alex’s Guide to Web Publishing, chap. 5:
Learn to Program HTML (Hypertext Markup Language) in 21 Minutes.
Morgan Kaufmann. ISBN 1558605347. Or available online.
URL http://www.arsdigita.com/books/panda/html

[19] Macromedia Flash.
URL http://www.macromedia.com/software/flash/

[20] Banks, Jerry, Carson II, John S., Nelson, Barry L. and Nicol, David M.
Discrete-Event System Simulation. Prentice Hall. ISBN 0130887021. A
good, detailed, up-to-date book.

[21] Kuhl, Frederick, Weatherly, Richard, Dahmann, Judith and Jones, Anita.
Creating Computer Simulation Systems: An Introduction to the High Level
Architecture. Prentice Hall. ISBN 0130225118.

[22] Law, Averill M. and Kelton, David W. Simulation Modeling and Analysis.
McGraw-Hill Higher Education, 2000. ISBN 0070592926.

[23] Zeigler, Bernard P., Praehofer, Herbert and Kim, Tag Gon. Theory of Mod-
eling and Simulation: Integrating Discrete Event and Continuous Complex
Dynamic Systems. Academic Press. ISBN 0127784551.

Web Server Performance Simulation c© Andrew Ferrier 2002

http://www.doc.ic.ac.uk/~ajf/Teaching/Simulation.html
http://www.new-destiny.co.uk/andrew/ past_work/queueing_theory/index.html
http://www.new-destiny.co.uk/andrew/ past_work/queueing_theory/index.html
http://java.sun.com/
http://www.w3.org/XML/
http://www.w3.org/People/all#timbl
http://www.useit.com/papers/responsetime.html
http://www.arsdigita.com/books/panda/html
http://www.macromedia.com/software/flash/

APPENDIX D. BIBLIOGRAPHY 95

[24] Jain, Raj. The Art of Computer Systems Performance Analysis Techniques
for Experimental Design, Measurement, Simulation, and Modeling. John
Wiley & Sons. ISBN 0471503363.

[25] Lewis, T.G. Distribution Sampling for Computer Simulation. Lexington
Books, 1975. ISBN 0669971391.

[26] Mukherjee, Shubhendu S., Adve, Sarita V., Austin, Todd, Emer, Joel and
Magnusson, Peter S. Performance Simulation Tools. Information on per-
formance simulation of low-level hardware.

[27] Simulation for Performance Measurements.
URL http://www.performance-simulation.com/

[28] Simulation Software Survey.
URL http://www.lionhrtpub.com/orms/surveys/Simulation/
Simulation.html

[29] Kennington, Alan. Simulation Software Links.
URL http://www.topology.org/soft/sim.html

[30] Murugesan, Sam and Deshpande, Yogesh (eds.). Web Engineering: Man-
aging Diversity and Complexity of Web Application Development. Springer
Verlag. ISBN 3540421300.

[31] Killelea, Patrick. Web Performance Tuning: Speeding Up the Web.
O’Reilly. ISBN 1565923790.

[32] Hong, Duke P. Constructing Web Server Performance Models (1998).
URL http://www1.ics.uci.edu/pub/duke/opnet98-web.pdf

[33] ACM Transactions on Modeling and Computer Simulation.
URL http://www.acm.org/tomacs/

[34] Slothouber, Louis P. A Model of Web Server Performance (1995).
URL http://www.geocities.com/webserverperformance/modelpaper.
html

[35] Masand, Brij and Spiliopoulou, Myra (eds.). Web Usage Analysis and User
Profiling. WEBKDD’99 Workshop, Springer Verlag. ISBN 3540678182.

[36] Lu, Hongjun and Zhou, Aoying (eds.). Web-Age Information Management
Conference. Springer Verlag, 2000. ISBN 3540676279.

[37] ACM. ACM Digital Libraries. ACM Press. ISBN 158113231X. See in
particular the paper ‘Server Selection on the World Wide Web’.

[38] Apache. Apache Flood Tool.
URL http://httpd.apache.org/test/flood/

[39] Mosberger, David and Jin, Tai. httperf. A tool for measuring web server
performance by applying loads to a server.
URL http://www.hpl.hp.com/personal/David_Mosberger/httperf.
html

c© Andrew Ferrier 2002 Web Server Performance Simulation

http://www.performance-simulation.com/
http://www.lionhrtpub.com/orms/ surveys/Simulation/Simulation.html
http://www.lionhrtpub.com/orms/ surveys/Simulation/Simulation.html
http://www.topology.org/soft/sim.html
http://www1.ics.uci.edu/pub/duke/opnet98-web.pdf
http://www.acm.org/tomacs/
http://www.geocities.com/webserverperformance/modelpaper.html
http://www.geocities.com/webserverperformance/modelpaper.html
http://httpd.apache.org/test/flood/
http://www.hpl.hp.com/ personal/David_Mosberger/httperf.html
http://www.hpl.hp.com/ personal/David_Mosberger/httperf.html

96 APPENDIX D. BIBLIOGRAPHY

[40] Web Server Simulation (1999). A Powerpoint Presentation on Web
Server Models. Most of it is not relevant to this project, but they state
‘Experimenting with actual server systems can be more expensive than
simulation software’ — the premise behind my project.
URL http://www.eos.ncsu.edu/eos/info/ie/ie441_info/arena/
Semester%20Projects%20441/Fall_1999/Fall1999Presentations/
Group1.ppt

[41] Discussions with Peter Harrison.

[42] GCJ: The GNU Compiler for Java. A compiler for Java that can compile
to native code.
URL http://gcc.gnu.org/java/

[43] Apache. Xerces 1.1.4 Software. A JAXP-compliant Java XML Parsing
toolkit.
URL http://xml.apache.org/xerces-j/index.html

[44] van der Vlist, Eric. Using W3C XML Schema.
URL http://www.xml.com/lpt/a/2000/11/29/schemas/part1.html

[45] DTD Tutorial. There appear to be no definitive web pages on DTDs but
this page seems as good as any.
URL http://www.w3schools.com/dtd/default.asp

[46] Clifford, Peter. Simulating Random Variables. The page referred to here is
for the inversion method, which I used for the Pareto distribution.
URL http://www.jesus.ox.ac.uk/~clifford/a5/chap1/node5.html

[47] Vázquez-Abad, Felisa J. and Champoux, Yanick. Generation of Random
Variables — The Pareto Distribution (1998).
URL http://babyl.dyndns.org/SimSpiders/GenerRV/Distributions/
pareto.html

[48] Pareto Distribution.
URL http://mathworld.wolfram.com/ParetoDistribution.html

[49] The Pareto Distribution.
URL http://www.math.uah.edu/stat/special/special12.html

[50] Rytgaard, Mette. Estimation in the Pareto Distribution.
URL http://www.casact.org/library/astin/vol20no2/201.pdf

[51] Rossi, Christian. Various documents on IEEE standard 754 on Binary
Floating-Point Arithmetic (1999).
URL http://cch.loria.fr/documentation/IEEE754/

[52] Hollasch, Steve. A simple explanation of IEEE standard 754 on Binary
Floating-Point Arithmetic (2001).
URL http://research.microsoft.com/~hollasch/cgindex/coding/
ieeefloat.html

[53] Knuth, Donald E. The Art of Computer Programming, vol. 2: Seminu-
merical Algorithms, pp. 10–11. Addison-Wesley, 1997, 3rd edn. ISBN
0-201-89684-2.

Web Server Performance Simulation c© Andrew Ferrier 2002

http://www.eos.ncsu.edu/eos/info/ ie/ie441_info/arena/Semester%20Projects%20441/ Fall_1999/Fall1999Presentations/Group1.ppt
http://www.eos.ncsu.edu/eos/info/ ie/ie441_info/arena/Semester%20Projects%20441/ Fall_1999/Fall1999Presentations/Group1.ppt
http://www.eos.ncsu.edu/eos/info/ ie/ie441_info/arena/Semester%20Projects%20441/ Fall_1999/Fall1999Presentations/Group1.ppt
http://gcc.gnu.org/java/
http://xml.apache.org/xerces-j/index.html
http://www.xml.com/lpt/a/2000/11/29/schemas/part1.html
http://www.w3schools.com/dtd/default.asp
http://www.jesus.ox.ac.uk/~clifford/a5/chap1/node5.html
http://babyl.dyndns.org/SimSpiders/ GenerRV/Distributions/pareto.html
http://babyl.dyndns.org/SimSpiders/ GenerRV/Distributions/pareto.html
http://mathworld.wolfram.com/ParetoDistribution.html
http://www.math.uah.edu/stat/special/special12.html
http://www.casact.org/library/astin/vol20no2/201.pdf
http://cch.loria.fr/documentation/IEEE754/
http://research.microsoft.com/~hollasch/ cgindex/coding/ieeefloat.html
http://research.microsoft.com/~hollasch/ cgindex/coding/ieeefloat.html

APPENDIX D. BIBLIOGRAPHY 97

[54] Jansson, Birger. Random Number Generators. Victor Pettersons Bokin-
dustri Aktiebolag, 1966.

[55] Press, William H, Teukolsky, Saul A, Vetterling, William T. and Flannery,
Brian P. Numerical Recipes in C: The Art of Scientific Computing. Cam-
bridge University Press. ISBN 0-521-43108-5.

[56] Coddington, Paul. Monte Carlo Simulation for Statistical Physics.
URL http://www.npac.syr.edu/users/paulc/lectures/montecarlo/

[57] The Java Language Specification: Types, Values, and Variables.
URL http://java.sun.com/docs/books/jls/first_edition/html/4.
doc.html#9208

[58] Debian GNU/Linux.
URL http://www.debian.org/

[59] SuSE Linux.
URL http://www.suse.com

[60] Javadoc Tool Home Page.
URL http://java.sun.com/j2se/javadoc/

[61] Code Conventions for the JavaTM Programming Language.
URL http://java.sun.com/docs/codeconv/html/CodeConvTOC.doc.
html

[62] Fuzz. A program for testing other programs by feeding them random input.
URL https://sourceforge.net/projects/fuzz

[63] Poskanzer, Jeffrey A. (2002). Software used.
URL http://www.acme.com/software/weblog_parse

[64] Discussions with Uli Harder.

[65] Enterprise JavaBeans.
URL http://java.sun.com/products/ejb/

[66] Stallman, Richard and McGrath, Roland. GNU Make.
URL http://www.gnu.org/software/make/make.html

[67] Cygwin. A Unix-like environment for Windows. It can be used to compile
WS3 on Windows using the supplied makefile.
URL http://www.cygwin.com/

[68] Download Extensions (2002).
URL http://java.sun.com/docs/books/tutorial/ext/basics/
download.html

[69] XML Spy. An XML editing suite.
URL http://www.xmlspy.com/

[70] UML (2002). A fairly basic but still very useful guide and quick reference
to UML notation.

c© Andrew Ferrier 2002 Web Server Performance Simulation

http://www.npac.syr.edu/users/paulc/lectures/montecarlo/
http://java.sun.com/docs/books/jls/ first_edition/html/4.doc.html#9208
http://java.sun.com/docs/books/jls/ first_edition/html/4.doc.html#9208
http://www.debian.org/
http://www.suse.com
http://java.sun.com/j2se/javadoc/
http://java.sun.com/docs/codeconv/html/CodeConvTOC.doc.html
http://java.sun.com/docs/codeconv/html/CodeConvTOC.doc.html
https://sourceforge.net/projects/fuzz
http://www.acme.com/software/weblog_parse
http://java.sun.com/products/ejb/
http://www.gnu.org/software/make/make.html
http://www.cygwin.com/
http://java.sun.com/docs/ books/tutorial/ext/basics/download.html
http://java.sun.com/docs/ books/tutorial/ext/basics/download.html
http://www.xmlspy.com/

98 APPENDIX D. BIBLIOGRAPHY

[71] OMG. UML Resource Page (2002). Contains links to the UML specification
and other UML-related information.
URL http://www.omg.org/uml/

[72] Larsson, Alexander and Henstridge, James et al. Dia. A drawing and
diagramming program.
URL http://www.lysator.liu.se/~alla/dia/

[73] Ambler, Scott W. Member function visiblity in Java programs (September
2000).
URL http://www.ibm.com/developerworks/library/
tip-mem-visibility.html

Web Server Performance Simulation c© Andrew Ferrier 2002

http://www.omg.org/uml/
http://www.lysator.liu.se/~alla/dia/
http://www.ibm.com/developerworks/ library/tip-mem-visibility.html
http://www.ibm.com/developerworks/ library/tip-mem-visibility.html

Appendix E

Glossary

Apache Refers to the Apache Sofware Foundation.

page 36

Erlang An Erlang is a unit of traffic intensity (which is represented with %).
It is named after A. K. Erlang, one of the creators of queueing theory.

page 44

event-based Event-based simulation is one of two main methods of computer-
based simulation, which involves directing simulating events. See also
process-based simulation.

page 14

farm A ‘farm’ or ‘server farm’ is a collection of interconnected serving machines,
typically low-powered, which distribute the load of serving requests.

page 13

FORTRAN A programming language which has very strong mathematics ca-
pabilities.

page 36

gcj A native code compiler for Java which I used on Linux.

page 36

Kendall Kendall notation, such as M/M/1, is a notation used to describe
queueing models. For more information, see [12].

page 44

Linux A free Operating System.

makefile A makefile makes it easier to build a program or parts of a program.
WS3 is supplied with a makefile which uses GNU make [66].

page 74

99

100 APPENDIX E. GLOSSARY

process-based Process-based simulation is one of two main methods of computer-
based simulation, which involves simulating the processes which cause
events. See also event-based simulation.

page 14

queueing network A queueing network is a network based around queueing:
in it’s most general sense, object or entities move around the network and
wait in queues at places around the network. In WS3, the objects are
messages, and the queues are attached to servers and network nodes.

page 29

queueing theory Queueing theory involves using mathematical theories to
model systems and determine various parameters of the system based
upon the provision of other parameters of the system. It is an alternative
to simulation of a system.

page 14

schema A ‘schema’ in general is a set of constraints, or a layout, for a set of
data. In the context of the this project and WS3, a schema normally refers
to an XML Schema.

page 77

Xerces A JAXP-compliant XML parser for Java, written by Apache.

page 36

XML Schema A ‘schema’ which constrains the content of an XML file.

page 25

Web Server Performance Simulation c© Andrew Ferrier 2002

Appendix F

List of Acronyms

CSV Comma Separated Variables A record-based file where each
new field is delimited by a comma, and each record is delimited
by a new line. They can be used for exchanging information
between spreadsheets and similar programs.

DOM Document Object Model An interface for accessing and up-
dating documents, such as those written in XML.

DTD Document Type Definition A file specifying the structure of
an SGML file, of which XML is a subset. See [45] for more
information.

EJB Enterprise Java Beans A component architecture for Java
[65].

FIFO First In First Out A queueing discipline.

GNU GNU’s Not Unix A free software system.

GUI Graphical User Interface A user interface using graphics and
commonly ‘windows’, such as Microsoft Windows or XWin-
dows.

HTML Hypertext Markup Language The markup language used to
create a typical web page.

HTTP Hypertext Transfer Protocol The protocol used on top of
TCP/IP to transfer web data — typically but not necessarily
HTML pages.

JAXP Java API for XML Parsing A method for accessing and up-
dating XML documents in the Java programming language.

LAN Local Area Network A network typically with no more than
a few hundred hosts, distributed over a small (local) area, at
most typically a building or two.

PC Personal Computer A small computer designed primarily for
personal use.

101

102 APPENDIX F. LIST OF ACRONYMS

SGML Standard Generalized Markup Language The more powerful
and more complex precursor to XML.

TCP/IP Transmission Control Protocol/Internet Protocol The gen-
eral data transfer protocol used on internets and on the Inter-
net.

TTL Time-to-Live A TTL value is normally used in network to
avoid problems caused by network routing loops: a TTL value
is decremented each time a packet or message is routed — if it
reaches zero, the packet or message is discarded. This involves
over-flooding of the network.

WS3 emulates TTL values for all messages.

UML Unified Modelling Language UML is a modelling language
designed to model many aspects of software systems. It is
based upon it’s precursors, OMT, Booch, and OOSE. In this
project UML has been used primarily to provide class hierarchy
diagrams and other related items in the report.

WS3 Web Server Simulation System The name of the software
written for this project. The acronym WS3 is sometimes writ-
ten as WSSS.

WSSS Web Server Simulation System See WS3.

WWW World Wide Web The interconnected hypertext web created
by the worldwide network of HTTP servers, connected with
TCP/IP.

XML eXtensible Markup Language A generalised markup language.
See [14] for more information.

Web Server Performance Simulation c© Andrew Ferrier 2002

	I The Project
	1 Introduction
	1.1 Aims
	1.2 Project Code and Reports
	1.3 Knowledge Assumed
	1.4 Report Outline

	2 Background
	2.1 Performance for Clients and Servers
	2.2 Current Practice and Research
	2.3 Why Use Simulation?

	II The Software
	3 Specification
	3.1 Summary Specification
	3.2 Input
	3.3 Simulation and Execution
	3.4 Output
	3.4.1 Summarised Output
	3.4.2 Trace Output

	4 Design
	4.1 General Design Assumptions
	4.1.1 Internal Design Assumptions
	4.1.2 External and Interface Design Assumptions

	4.2 Class Structure

	5 Implementation Issues
	5.1 Programming Language for Implementation
	5.1.1 Input File Format

	5.2 Changes to Specification and Design
	5.3 Java Simulation Toolkit
	5.4 Randomness
	5.5 Equilibrium
	5.6 Documentation
	5.7 Standards

	6 Testing
	6.1 TST-001
	6.2 TST-002
	6.3 TST-003
	6.4 TST-004
	6.5 TST-005
	6.6 TST-006
	6.7 TST-007 and TST-008
	6.8 Non-File-Suite Testing

	III Uses for the Software
	7 Evaluation
	7.1 Notes About the Input Files
	7.2 Web Serving Guidelines
	7.2.1 Size of Machines Used
	7.2.2 Server Threading
	7.2.3 Distributional Differences
	7.2.4 Real-world Example

	7.3 WS3's Speed
	7.4 WS3's Accuracy

	8 Conclusions
	8.1 Construction of WS3
	8.2 General Conclusions about Web Systems and WS3
	8.3 Strengths and Weaknesses of WS3 and the Project
	8.3.1 Strengths
	8.3.2 Weaknesses

	8.4 Future Extensions
	8.4.1 WS3 Features
	8.4.2 Analysis of Web Serving

	IV Appendices
	A User Guide
	A.1 Licencing
	A.2 An Overview of WS3
	A.3 System Requirements
	A.4 Installing WS3
	A.4.1 Installing on Unix/Linux
	A.4.2 Installing on Windows
	A.4.3 Warning About Installation on any Platform

	A.5 File Structure Once Installed
	A.6 Testing the Install of WS3
	A.6.1 Testing on Unix/Linux
	A.6.2 Testing on Windows
	A.6.3 Randomisation Test

	A.7 Rebuilding the Javadoc Documentation
	A.8 Creating an Input File
	A.8.1 Points to be Noted about Input Files
	A.8.2 Input File Elements
	A.8.3 System Objects
	A.8.4 Connections and Routes
	A.8.5 Distribution Types
	A.8.6 Time-to-live Expiry
	A.8.7 Constraint Enforcement

	A.9 Running WS3
	A.9.1 Data Dumping
	A.9.2 Tracing

	A.10 Interpreting the Output of WS3

	B Network Diagram Conventions
	C UML Diagrams
	C.1 Conventions

	D Bibliography
	E Glossary
	F List of Acronyms

